Advertisement

Communications in Mathematical Physics

, Volume 180, Issue 3, pp 587–603 | Cite as

Holomorphic bundles and many-body systems

  • Nikita Nekrasov
Article

Abstract

We show that spin generalization of elliptic Calogero-Moser system, elliptic extension of Gaudin model and their cousins are the degenerations of Hitchin systems. Applications to the constructions of integrals of motion, angle-action variables and quantum systems are discussed. The constructions of classical systems are motivated by Conformal Field Theory, and their quantum counterparts can be thought of as being the degenerations of the critical level Knizhnik-Zamolodchikov-Bernard equations.

Keywords

Neural Network Field Theory Complex System Nonlinear Dynamics Quantum System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BBKT] Babelon, O., Billey, E., Krichever, I., Talon, M.: Spin generalization of the Calogero-Moser system and the Matrix KP equation. hepth/9411160Google Scholar
  2. [Beil] Beilinson, A., Drinfeld, V.: Quantization of Hitchin's fibration and Langlands program. A. Beilinson's lectures at IAS, Fall 1994Google Scholar
  3. [Be] Bernard, D.: Nucl. Phys.B303, 77 (1988),B309, 14 (1988)Google Scholar
  4. [C] Calogero, F.: J. Math. Phys.12, 419 (1971)Google Scholar
  5. [Ch] Cherednik, I.: Difference-elliptic operators and root systems. hep-th/9410188Google Scholar
  6. [EF] Etingof, P., Frenkel, l.: Central extensions of current groups in two dimensions. hepth/9303047Google Scholar
  7. [EK1] Etingof, P.: Quantum integrable systems and representations of Lie algebras. hepth/9311132Google Scholar
  8. [EK2] Etingof, P., Kirillov, A.Jr.: On the affine analogue of Jack's and Macdonald's polynomials. Yale preprint, 1994Google Scholar
  9. [EFK] Etingof, P., Frenkel, I., Kirillov-Jr.A.: Spherical functions on affine Lie groups. Yale preprint, 1994Google Scholar
  10. [FV] Felder, G., Varchenko, A.: Integral formula for the solutions of the elliptic KZB equations. Int. Math. Res. Notices5, 222–233 (1995)Google Scholar
  11. [Ga] Garnier, R.: Sur une classe de systemès differentiels abeliéns déduits de la theorie des équations linéares. Rend. del Circ. Matematice Di Palermo,43, 4 (1919)Google Scholar
  12. [GN1] Gorsky, A., Nekrasov, N.: Elliptic Calogero-Moser System from Two Dimensional Current Algebra hepth/9401021Google Scholar
  13. [GN2] Gorsky, A., Nekrasov, N.: Relativistic Calogero-Moser model as gauged WZW theory Nucl. Phys.B436, 582–608 (1995)Google Scholar
  14. [GN3] Nekrasov, N., Gorsky, A.: Integrable systems on moduli spaces. In preparationGoogle Scholar
  15. [FF] Feigin, B., Frenkel, E., Reshetikhin, N.: Gaudin Model, Critical Level and Bethe Ansatz. Commun. Math. Phys.166, 27–62 (1995)Google Scholar
  16. [G] Gaudin, M.: J. Physique37, 1087–1098 (1976)Google Scholar
  17. [H] Hitchin, N.: Duke Math. J.54, No. 1 (1987)Google Scholar
  18. [I] Ivanov, D.: Knizhnik-Zamolodchikov-Bernard equations on Riemann surfaces. hepth/9410091Google Scholar
  19. [KKS] Kazhdan, D., Kostant, B., Sternberg, S.: Comm. on Pure and Appl. Math.XXXI, 481–507 (1978)Google Scholar
  20. [KZ] Knizhnik, V., Zamolodchikov, A.: Nucl. Phys.B247, 83 (1984)Google Scholar
  21. [K] Knizhnik, V.: Analytic fields on Riemann surfaces. Commun. Math. Phys.112, 567 (1987)Google Scholar
  22. [Lo] Losev, A.: Coset construction and Bernard Equations. CERN-TH.6215/91Google Scholar
  23. [OP] Olshanetsky, M., Perelomov, A.: Phys. Rep.71, 313 (1981)Google Scholar
  24. [M] Moser, J.: Adv. Math.16, 197–220 (1975)Google Scholar
  25. [Kr] Krichever, I.: Funk. Anal. and Appl.12, 1, 76–78 (1978),14, 282–290, (1980)Google Scholar
  26. [RS] Ruijsenaars, S.N.M., Schneider, H.: Ann. Phys.170, 370–405 (1986)Google Scholar
  27. [R] Ruijsenaars, S.: Commun. Math. Phys.110, 191–213 (1987)Google Scholar
  28. [S] Sutherland, B.: Phys. Rev.A5, 1372–1376 (1972)Google Scholar
  29. [Sch] Schlesinger, L.: Über eien Klasse von Differentialsystemen beliebiger Ordnung mit festen kritischen Punkten. Journal für die reine und angewandte Mathematik, Bd.CXLI, 96–145 (1912)Google Scholar
  30. [V] Verlinde, E.: Nucl. Phys.B300, 360 (1988)Google Scholar
  31. [ER] Enriquez, B., Rubtsov, V.: Hitchin systems, higher Gaudin operators andr-matrices. alggeom/9503010Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • Nikita Nekrasov
    • 1
    • 2
  1. 1.Department of PhysicsPrinceton UniversityPrincetonUSA
  2. 2.Institute of Theoretical and Experimental PhysicsMoscowRussia

Personalised recommendations