Skip to main content
Log in

Self-avoiding walk in five or more dimensions I. The critical behaviour

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We use the lace expansion to study the standard self-avoiding walk in thed-dimensional hypercubic lattice, ford≧5. We prove that the numberc n ofn-step self-avoiding walks satisfiesc n ~ n, where μ is the connective constant (i.e. γ=1), and that the mean square displacement is asymptotically linear in the number of steps (i.e.v=1/2). A bound is obtained forc n(x), the number ofn-step self-avoiding walks ending atx. The correlation length is shown to diverge asymptotically like (μ−Z)1/2. The critical two-point function is shown to decay at least as fast as ⋎x⋎−2, and its Fourier transform is shown to be asymptotic to a multiple ofk −2 ask→0 (i.e. η=0). We also prove that the scaling limit is Gaussian, in the sense of convergence in distribution to Brownian motion. The infinite self-avoiding walk is constructed. In this paper we prove these results assuming convergence of the lace expansion. The convergence of the lace expansion is proved in a companion paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aizenman, M.: Geometric analysis of ϕ4 fields and Ising models, Parts I and II}. Commun. Math. Phys.86, 1–48 (1983)

    Article  Google Scholar 

  2. Aragão de Carvalho, C., Caracciolo, S., Fröhlich, J.: Polymers andg|Φ|4 theory in four dimensions. Nucl. Phys. B215 [FS7], 209–248 (1983)

    Article  Google Scholar 

  3. Arnaudon, D., Iagolnitzer, D., Magnen, J.: Weakly self-avoiding polymers in four dimensions. Rigorous results. Phys. Lett. B273, 268–272 (1991)

    Article  Google Scholar 

  4. Billingsley, P.: Convergence of probability measures. New York, Chichester, Brisbane, Toronto: John Wiley and Sons 1968.

    Google Scholar 

  5. Bovier, A., Felder, G., Fröhlich, J.: On the critical properties of the Edwards and the self-avoiding walk model of polymer chains. Nucl. Phys. B230 [FS10], 119–147 (1984)

    Article  Google Scholar 

  6. Brydges, D.C.: A short course on cluster expansions. In Osterwalder, K., Stora, R. (eds.), Critical Phenomena, Random Systems, Gauge Theories. Amsterdam, New York, Oxford, Tokyo: North-Holland (Les Houches 1984) 1986

    Google Scholar 

  7. Brydges, D.C., Evans, S.N., Imbrie, J.: Self-avoiding walk on a hierarchical lattice in four demensions. Ann. Probab.20, 82–124 (1992)

    Google Scholar 

  8. Brydges, D.C., Spencer, T.: Sell-avoiding walk in 5 or more dimensions. Commun. Math. Phys.97, 126–148 (1985)

    Article  Google Scholar 

  9. Chayes, J.T., Chayes, L.: Ornstein-Zernike behavior for self-avoiding walks at all noncritical temperatures. Commun. Math. Phys.105, 221–238 (1986)

    Article  Google Scholar 

  10. Fröhlich, J.: On the triviality of ϕ 4 d theories and the approach to the critical point ind≧4 dimensions. Nucl. Phys.B200 [FS4], 281–296 (1982)

    Article  Google Scholar 

  11. Guttmann, A.J.: Bounds on connective constants for self-avoiding walks. J. Phys. A: Math. Gen.16, 2233–2238 (1983)

    Article  Google Scholar 

  12. Guttmann, A.J.: On the critical behaviour of self-avoiding walks: II. J. Phys. A: Math. Gen.22, 2807–2813 (1989)

    Article  Google Scholar 

  13. Hammersley, J.M.: Percolation processes, II. Connective constants. Proc. Camb. Phil. Soc.53, 642–645 (1957)

    Google Scholar 

  14. Hammersley, J.M., Welsh, D.J.A.: Further results on the rate of convergence to the connective constant of the hypercubical lattice. Quart. J. Math. Oxford13, (2), 108–110 (1962)

    Google Scholar 

  15. Hara, T.: Mean field critical behaviour for correlation length for percolation in high dimensions. Prob. Th. Rel. Fields86, 337–385 (1990)

    Article  Google Scholar 

  16. Hara, T., Slade, G.: Mean-field critical behaviour for percolation in high dimensions. Commun. Math. Phys.128, 333–391 (1990)

    Google Scholar 

  17. Hara, T., Slade, G.: On the upper critical dimension of lattice trees and lattice animals. J. Stat. Phys.59, 1469–1510 (1990)

    Article  Google Scholar 

  18. Hara, T., Slade, G.: Critical behaviour of self-avoiding walk in five or more dimensions. Bull. A.M.S.25, 417–423 (1991)

    Google Scholar 

  19. Hara, T., Slade, G.: The number and size of branched polymers in high dimensions. J. Stat. Phys. (In press)

  20. Hara, T., Slade, G.: The lace expansion for self-avoiding walk in five or more dimensions. Rev. Math. Phys. (In press)

  21. Kesten, H.: On the number of self-avoiding walks. J. Math. Phys.4, 960–969 (1963)

    Article  Google Scholar 

  22. Kesten, H.: On the number of self-avoiding walks. II. J. Math. Phys.5, 1128–1137 (1964)

    Article  Google Scholar 

  23. Lawler, G.: A self-avoiding random walk. Duke Math. J.47, 655–693 (1980)

    Article  Google Scholar 

  24. Lawler, G.: The infinite self-avoiding walk in high dimensions. Ann. Probab.17, 1367–1376 (1989)

    Google Scholar 

  25. Madras, N.: End patterns of self-avoiding walks. J. Sat. Phys.53, 689–701 (1988)

    Article  Google Scholar 

  26. Madras, N.: Bounds on the critical exponent of self-avoiding polygons. In: Durrett, R., Kesten, H. (eds.), Random walks, Brownian motion and interacting particle systems. Boston: Birkhäuser 1991

    Google Scholar 

  27. Madras, N., Slade, G.: The self-avoiding walk. In preparation. To appear in the Birkhäuser series Probability and Its Applications

  28. Madras, N., Sokal, A.D.: The pivot algorithm: A highly efficient Monte Carlo method for the self-avoiding walk. J. Stat. Phys.50, 109–186 (1988)

    Article  Google Scholar 

  29. Nguyen, B.G., Yang, W.-S.: Triangle condition for oriented percolation in high dimensions. Preprint (1991)

  30. Nienhuis, B.: Exact critical exponents of theO(x) models in two dimensions. Phys. Rev. Lett.49, 1062–1065 (1982)

    Article  Google Scholar 

  31. Nienhuis, B.: Critical behaviour of two-dimensional spin models and charge asymmetry in the Coulomb gas. J. Stat. Phys.34, 731–761 (1984)

    Article  Google Scholar 

  32. Slade G.: The diffusion of self-avoiding random walk in high dimensions. Commun. Math. Phys.110, 661–683 (1987)

    Article  Google Scholar 

  33. Slade, G.: Convergence of self-avoiding random walk to Brownian motion in high dimensions. J. Phys. A: Math. Gen.21, L417-L420 (1988)

    Article  Google Scholar 

  34. Slade, G.: The scaling limit of self-avoiding random walk in high dimensions. Ann. Probab.17, 91–107 (1989)

    Google Scholar 

  35. Slade, G.: The lace expansion and the upper critical dimension for percolation. Lectures Appl. Math.27, 53–63 (1991). Mathematics of Random Media, Kohler, W.E., White, B.S. (eds.) Providence, RI: A.M.S.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by M. Aizenman

Supported by the Nishina Memorial Foundation and NSF grant PHY-8896163.

Supported by NSERC grant A9351

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hara, T., Slade, G. Self-avoiding walk in five or more dimensions I. The critical behaviour. Commun.Math. Phys. 147, 101–136 (1992). https://doi.org/10.1007/BF02099530

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02099530

Keywords

Navigation