Skip to main content
Log in

The galilean group in 2+1 space-times and its central extension

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The problem of constructing the central extensions, by the circle group, of the group of Galilean transformations in two spatial dimensions; as well as that of its universal covering group, is solved. Also solved is the problem of the central extension of the corresponding Lie algebra. We find that the Lie algebra has a three parameter family of central extensions, as does the simply-connected group corresponding to the Lie algebra. The Galilean group itself has a two parameter family of central extensions. A corollary of our result is the impossibility of the appearance of non-integer-valued angular momentum for systems possessing Galilean invariance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wigner, E.P.: Ann. of Math.40, 149–204 (1939)

    MathSciNet  Google Scholar 

  2. Mukunda, N., Sudarshan, E.C.G.: Classical Dynamics: A Modern Perspective, New York: John Wiley & Sons, 1974, Chapter 19

    Google Scholar 

  3. Bargmann, V.: Ann. of Math.59, 1–46 (1954)

    Google Scholar 

  4. Levy-Leblond, J.: J. Math. Phys.4, 776–788 (1963)

    Article  Google Scholar 

  5. Borchers, H.J., Sen, R.N.: Commun. Math. Phys.42, 101–126 (1975)

    Article  Google Scholar 

  6. Wilczek, F.: Phys. Rev. Lett.49, 957–959 (1983)

    Article  Google Scholar 

  7. Divakaran, P.P.: Rev. Math. Phys.6, 167–205 (1994)

    Article  Google Scholar 

  8. Raghunathan, M.S.: Rev. Math. Phys.6, 207–225 (1994)

    Article  Google Scholar 

  9. Moore, C.C.: Trans. Am. Math. Soc.113, 40–63 (1964)

    Google Scholar 

  10. Dubrovin, B.A., Fomenko, A.T., Novikov, S.P.: Modern Geometry — Methods and Applications, Part II. The Geometry and Topology of Manifolds, Berlin, Heidelberg, New York: Springer-Verlag, 1993, p. 29

    Google Scholar 

  11. Brown, K.S.: Cohomology of Groups. Graduate Texts in Mathematics, Berlin, Heidelberg, New York: Springer-Verlag, 1982, Chap. IV

    Google Scholar 

  12. Kirillov, A.A.: Elements of the Theory of Representations. Berlin, Heidelberg, New York: Springer-Verlag, 1976, pp. 18–22 and 222–224

    Google Scholar 

  13. Mackey, G.W.: The Theory of Unitary Group Representations, Chicago and London: The University of Chicago Press, 1976, pp. 199–202

    Google Scholar 

  14. Varadarajan, V.S.: Geometry of Quantum Theory, Second Edition, Berlin, Heidelberg, New York: Springer, 1985, Theorem 7.31, p. 268

    Google Scholar 

  15. Wilczek, F., Zee, A.: Phys. Rev. Lett.51, 2250–2252 (1983)

    Article  Google Scholar 

  16. Fröhlich, J., Marchetti, P.A.: Commun. Math. Phys.121, 177–223 (1989)

    Article  Google Scholar 

  17. Leinaas, J.M., Myrheim, J.: Nuovo Cimento37B, 1–23 (1977)

    Google Scholar 

  18. Goldin, G.A., Menikhoff, R., Sharp, D.H.: J. Math. Phys.22, 1664–1668 (1981)

    Article  Google Scholar 

  19. Imbo, T.D., Imbo, C.S., Sudarshan, E.C.G.: Phys. Lett.B235, 103–107 (1990)

    Article  Google Scholar 

  20. Fröhlich, J., Marchetti, P.A.: Nucl. Phys.B356, 533–573 (1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by S.-T. Yau

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bose, S.K. The galilean group in 2+1 space-times and its central extension. Commun.Math. Phys. 169, 385–395 (1995). https://doi.org/10.1007/BF02099478

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02099478

Keywords

Navigation