Advertisement

Communications in Mathematical Physics

, Volume 174, Issue 1, pp 161–190 | Cite as

Meromorphic zeta functions for analytic flows

  • David Fried
Article

Abstract

We extend to hyperbolic flows in all dimensions Rugh's results on the meromorphic continuation of dynamical zeta functions. In particular we show that the Ruelle zeta function of a negatively curved real analytic manifold extends to a meromorphic function on the complex plane.

Keywords

Neural Network Manifold Statistical Physic Complex System Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AW] Adler, R., Weiss, B.: Similarity of automorphisms of the torus. Memoirs AMS98, (1970)Google Scholar
  2. [AB] Atiyah, M., Bott, R.: Notes on the Lefschetz fixed point theorem for elliptic complexes. Harvard, 1964Google Scholar
  3. [B] Bieberbach, L.: Lehrbuch der Funktionentheorie. Teubner, B.G., 1927Google Scholar
  4. [B1] Bowen, R.: Symbolic dynamics for hyperbolic flows. Am. J. Math.95, 429–460 (1973)Google Scholar
  5. [B2] Bowen, R.: On Axiom A diffeomorphisms. CBMS Reg. Conf.35 Providence, RI: AMS, 1978Google Scholar
  6. [BL] Bowen, R., Lanford, O.: Zeta functions of restrictions of the shift transformation. In: Global Analysis, Proceedings of 1968 Berkeley conference. Proc. Symp. Pure Math.XIV, Providence, RI: AMS, 1970Google Scholar
  7. [F1] Fried, D.: Zeta functions of Ruelle and Selberg I. Ann. Sci. E.N.S.19, 491–517 (1986)Google Scholar
  8. [F2] Fried, D.: Symbolic dynamics for triangle groups. To appear in Inv. Math.Google Scholar
  9. [F3] Fried, D.: Lefschetz formulas for flows. In: The Lefschetz Centennial Conference Part III, Proceedings of 1984 conference, in Mexico City, Contemporary Mathematics58, III (1987), pp. 19–69Google Scholar
  10. [F4] Fried, D.: Counting circles. In: Dynamical Systems, Proceedings of 1986–87 Special Year conference at Univ. of Maryland. Springer LNM1342, 196–215 (1988)Google Scholar
  11. [F5] Fried, D.: Flat-trace asymptotics of a uniform system of contractions. To appear in: Erg. Th. and Dyn. Syst.Google Scholar
  12. [F6] Fried, D.: Analytic torsion and closed geodesics on hyperbolic manifolds. Inv. Math.84, 523–540 (1986)Google Scholar
  13. [F7] Fried, D.: Fuchsian groups and Reidemeister torsion. In: The Selberg Trace Formula and Related Topics, Proceedings of the 1984 conference at Bowdoin College. Contemp. Math.53, 141–163 (1986)Google Scholar
  14. [F8] Fried, D.: Torsion and closed geodesics on complex hyperbolic manifolds. Inv. Math.91, 31–51 (1988)Google Scholar
  15. [Ga] Gallavotti, G.: Funzioni zeta ed insiemi basilas. Accad. Lincei, Rend. Sc. fismat. e nat.61, 309–317 (1976)Google Scholar
  16. [G] Grothendieck, A.: La theorie de Fredholm. Bull. Soc. Math. France84, 319–384 (1956)Google Scholar
  17. [GS] Guillemin, V., Sternberg, S.: Geometric Asymptotics. AMS Math Surveys14, 1978Google Scholar
  18. [Gu] Guillemin, V.: Lectures on the spectral theory of elliptic operators. Duke Math. J.44, 485–517 (1977)Google Scholar
  19. [H] Hormander, L.: An Introduction to Complex Analysis in Several Variables. Amsterdam: North-Holland, 1973Google Scholar
  20. [K] Kitaev, A. Yu.: Fredholm determinants for hyperbolic diffeomorphisms of finite smoothness. PreprintGoogle Scholar
  21. [Ma] Manning, A.: Axiom A diffeomorphisms have rational zeta functions. Bull. London Math. Soc.3, 215–220 (1971)Google Scholar
  22. [M] Millson, J.: Closed geodesics and the η-invariant. Annals of Math.108, 1–39 (1978)Google Scholar
  23. [MS] Stanton, R., Moscovici, H.: R-torsion and zeta functions for locally symmetric manifolds. Inv. Math.105, 185–216 (1991)Google Scholar
  24. [Pa] Parry, W.: Synchronisation of canonical measures for hyperbolic attractors. Commun. Math. Phys.106, 267–275 (1986)Google Scholar
  25. [PP] Parry, W., Pollicott, M.: Zeta Functions and the Periodic Orbit Structure of Hyperbolic Dynamics. Asterisque187–188, Soc. Math. de France, 1990Google Scholar
  26. [P] Pollicott, M.: Meromorphic extension for generalized zeta functions. Inv. Math.85 (1986)Google Scholar
  27. [Ra] Randol, B.: On the asymptotic distribution of closed geodesics on compact Riemann surfaces. Trans. AMS233, 241–247 (1977)Google Scholar
  28. [R1] Ruelle, D.: Zeta functions for expanding maps and Anosov flows. Inv. Math.34, 231–242 (1976)Google Scholar
  29. [R2] Ruelle, D.: An extension of the theory of Fredholm determinants. Publ. Math. I.H.E.S.72, 311–333 (1990)Google Scholar
  30. [Ru] Rugh, H.H.: The correlation spectrum for hyperbolic analytic maps. Nonlinearity5, 1237–1263 (1992)Google Scholar
  31. [Ru] Rugh, H.H.: Generalized Fredholm determinants and Selberg zeta functions for Axiom A dynamical systems. PreprintGoogle Scholar
  32. [S] Sanchez-Mergado, H.: Lefschetz formulas for Anosov flows on 3-manifolds. Erg. Th. and Dyn. Syst.13, 335–347 (1993)Google Scholar
  33. [Se] Selberg, A.: Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series. J. Ind. Math. Soc.20, 47–87 (1956)Google Scholar
  34. [Sm] Smale, S.: Differentiable dynamical systems. BAMS73, 747–817 (1967)Google Scholar
  35. [T] Tangerman, F.: Meromorphic continuation of Ruelle zeta functions. Thesis, Boston University, 1986Google Scholar
  36. [Tr] Treves, F.: Topological Vector Spaces, Distributions and Kernels. New York: Academic Press, 1967Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • David Fried
    • 1
  1. 1.Department of MathematicsBoston UniversityBostonUSA

Personalised recommendations