Skip to main content
Log in

Global spherically symmetric solutions to the equations of a viscous polytropic ideal gas in an exterior domain

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider the equations of a viscous polytropic ideal gas in the domain exterior to a ball in ℝn (n=2 or 3) and prove the global existence of spherically symmetric smooth solutions for (large) initial data with spherical symmetry. The large-time behavior of the solutions is also discussed. To prove the existence we first study an approximate problem in a bounded annular domain and then obtain a priori estimates independent of the boundedness of the annular domain. Letting the diameter of the annular domain tend to infinity, we get a global spherically symmetric solution as the limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R.A.: Sobolev Spaces. New York: Academic Press, 1975

    Google Scholar 

  2. Alikakos, N.D.: An application of the invariance principle to reaction-diffusion equations. J. Diff. Equations33, 201–225 (1979)

    Article  Google Scholar 

  3. Antontsev, S.N., Kazhikhov, A.V., Monakhov, V.N.: Boundary Value Problems in Mechanics of Nonhomogeneous Fluids. Amsterdam, New York: North-Holland, 1990

    Google Scholar 

  4. Batchelor, G.K.: An Introduction to Fluid Dynamics. London: Cambridge Univ. Press, 1967

    Google Scholar 

  5. Dafermos, C.M., Hsiao, L.: Global smooth thermomechanical processes in one-dimensional nonlinear thermoviscoelasticity. Nonlinear Anal. T.M.A.6, 435–454 (1982)

    Article  Google Scholar 

  6. Friedman, A.: Partial Differential Equations of Parabolic Type. Englewood Cliffs, NJ: Prentice-Hall, 1964

    Google Scholar 

  7. Jiang, S.: On initial boundary value problems for a viscous, heat-conducting, one-dimensional real gas. J. Diff. Equations110, 157–181 (1994)

    Article  Google Scholar 

  8. Jiang, S.: On the asymptotic behavior of the motion of a viscous, heat-conducting, onedimensional real gas. Math. Z.216, 317–336 (1994)

    Google Scholar 

  9. Jiang, S.: Remarks on the global existence in the dynamics of a viscous, heat-conducting, one-dimensional gas. Proc. of the Workshop on Qualitative Aspects and Appl. of Nonlinear Evol Eqns., H. Beirao da Veiga, Ta-Tsien Li (eds.). Singapore: World Scientific Publ., 1994, pp. 156–162

    Google Scholar 

  10. Jiang, S.: Global smooth solutions to the equations of a viscous, heat-conducting, one-dimensional gas with density-dependent viscosity (submitted)

  11. Kawashima, S., Nishida, T.: Global solutions to the initial value problem for the equations of one-dimensional motion of viscous polytropic gases. J. Math. Kyoto Univ.21, 825–837 (1981)

    Google Scholar 

  12. Kawohl, B.: Global existence of large solutions to initial boundary value problems for a viscous, heat-conducting, one-dimensional real gas. J. Diff. Equations58, 76–103 (1985)

    Article  Google Scholar 

  13. Kazhikhov, A.V.: To a theory of boundary value problems for equations of one-dimensional non-stationary motion of viscous heat-conduction gases. Boundary Value Problems for Hydrodynamical Equations. Inst. Hydrodynamics, Siberian Branch Akad., USSR, No.50, 1981, pp. 37–62 (Russian)

    Google Scholar 

  14. Kazhikhov, A.V., Shelukhin, V.V.: Unique global solution with respect to time of initial boundary value problems for one-dimensional equations of a viscous gas. J. Appl. Math. Mech.41, 273–282 (1977)

    Article  Google Scholar 

  15. Ladyzenskaja, O.A., Solonnikov, V.A., Ural'ceva, N.N.: Linear and Quasilinear Equations of Parabolic Type. Providence, Rhode Island: AMS, 1968

    Google Scholar 

  16. Matsumura, A., Nishida, T.: The initial value problem for the equations of motion of compressible viscous and heat-conductive fluids. Proc. Japan Acad. Ser A55, 337–342 (1979)

    Google Scholar 

  17. Matsumura, A., Nishida, T.: The initial value problem for the equations of motion of viscous and heat-conductive gases. J. Math. Kyoto Univ.20, 67–104 (1980)

    Google Scholar 

  18. Matsumura, A., Nishida, T.: Initial boundary value problems for the equations of motion of general fluids. Computing Meth. in Appl. Sci. and Engin. V, R. Glowinski, J.L. Lions (eds.), Amsterdam: North-Holland, 1982, pp. 389–406

    Google Scholar 

  19. Matsumura, A., Nishida, T.: Initial boundary value problems for the equations of motion of compressible viscous and heat-conductive fluids. Commun. Math. Phys.89, 445–464 (1983)

    Article  Google Scholar 

  20. Nagasawa, T.: On the one-dimensional motion of the polytropic ideal gas non-fixed on the boundary. J. Diff. Equations65, 49–67 (1986)

    Article  Google Scholar 

  21. Nagasawa, T.: On the outer pressure problem of the one-dimensional polytropic ideal gas. Japan J. Appl. Math.5, 53–85 (1988)

    Google Scholar 

  22. Nagasawa, T.: On the one-dimensional free boundary problem for the heat-conductive compressible viscous gas. Lecture Notes in Num. Appl. Anal., M. Mimura, T. Nishida (eds.) Vol.10, Tokyo: Kinokuniya/North-Holland, 1989, pp. 83–99

    Google Scholar 

  23. Nikolaev, V.B.: On the solvability of mixed problem for one-dimensional axisymmetrical viscous gas flow. Dinamicheskie zadachi Mekhaniki sploshnoj sredy,63 Sibirsk. Otd. Acad. Nauk SSSR, Inst. Gidrodinamiki, 1983 (Russian)

  24. Renardy, M., Hrusa, W.J., Nohel, J.A.: Mathematical Problems in Viscoelasticity. Pitman Monographs and Surveys in Pure and Appl. Math.35, Longman Sci. Tech., 1987

  25. Serrin, J.: Mathematical principles of classical fluid mechanics. Handbuch der PhysikVIII/1, Berlin, Heidelberg, New York: Springer 1972, pp. 125–262

    Google Scholar 

  26. Valli, A.: Mathematical results for compressible flows. Mathematical Topics in Fluid Mechanics, J.F. Rodrigues, A. Sequeira (eds.) Pitman Research Notes in Math. Ser.274, New York: John Wiley 1992, pp. 193–229

    Google Scholar 

  27. Valli, A., Zajączkowski, W.M.: Navier-Stokes Equations for compressible fluids: global existence and qualitative properties of the solutions in the general case. Commun. Math. Phys.103, 259–296 (1986)

    Article  Google Scholar 

  28. Yashima, H.F., Benabidallah, R.: Equation à symétrie sphérique d'un gaz visqueux et calorifère avec la surface libre. Annali Mat. Pura Applicata CLXVIII, 75–117 (1995)

    Article  Google Scholar 

  29. Yashima, H.F., Benabidallah, R.: Unicite' de la solution de l'équation monodimensionnelle ou à symétrie sphérique d'un gaz visqueux et calorifère. Rendi. del Circolo Mat. di Palermo, Ser. II,XLII, 195–218 (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by H. Araki

Dedicated to Professor Rolf Leis on the occasion of his 65th birthday

Supported by the SFB 256 of the Deutsche Forschungsgemeinschaft at the University of Boon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, S. Global spherically symmetric solutions to the equations of a viscous polytropic ideal gas in an exterior domain. Commun.Math. Phys. 178, 339–374 (1996). https://doi.org/10.1007/BF02099452

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02099452

Keywords

Navigation