Skip to main content
Log in

Classification of local generalized symmetries for the vacuum Einstein equations

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

A local generalized symmetry of a system of differential equations is an infinitesimal transformation depending locally upon the fields and their derivatives which carries solutions to solutions. We classify all local generalized symmetries of the vacuum Einstein equations in four spacetime dimensions. To begin, we analyze symmetries that can be built from the metric, curvature, and covariant derivatives of the curvature to any order; these are called natural symmetries and are globally defined on any spacetime manifold. We next classify first-order generalized symmetries, that is, symmetries that depend on the metric and its first derivatives. Finally, using results from the classification of natural symmetries, we reduce the classification of all higher-order generalized symmetries to the first-order case. In each case we find that the local generalized symmetries are infinitesimal generalized diffeomorphisms and constant metric scalings. There are no non-trivial conservation laws associated with these symmetries. A novel feature of our analysis is the use of a fundamental set of spinorial coordinates on the infinite jet space of Ricci-flat metrics, which are derived from Penrose's “exact set of fields” for the vacuum equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Elliot, J., Dawber, P.: Symmetry in Physics. New York: Oxford University Press, 1979

    Google Scholar 

  2. Gourdin, M.: Lagrangian Formalism and Symmetry Laws. New York: Gordon and Breach, 1969

    Google Scholar 

  3. Olver, P.: Applications of Lie Groups to Differential Equations. Berlin, Heidelberg, New York: Springer, 1993

    Google Scholar 

  4. Bluman, G., Kumei, S.: Symmetries of Differential Equations. Berlin, Heidelberg, New York: Springer, 1989

    Google Scholar 

  5. Noether, E.: Nachr. Konig. Gesell. Wissen. Gottinger Math. Phys. Kl., 235 (1918)

  6. Fokas, A.: Stud. Appl. Math.,77, 253 (1987)

    Google Scholar 

  7. Mikhailov, A., Shabat, A., Sokolov, V.: In What is Integrability? V. Zakharov (ed.) Berlin, Heidelberg, New York: Springer, 1991

    Google Scholar 

  8. Belinsky, V., Zakharov, V.: Sov. Phys. JETP50, 1 (1979)

    Google Scholar 

  9. Hauser, I., Ernst, F.: J. Math. Phys.22, 1051 (1981)

    Article  Google Scholar 

  10. Penrose, R.: Gen. Rel. Grav.7, 31 (1976)

    Article  Google Scholar 

  11. Boyer, C., Winternitz, P.: J. Math. Phys.30, 1081 (1989)

    Article  Google Scholar 

  12. Grant, J.: Phys. Rev. D48, 2606 (1993)

    Article  Google Scholar 

  13. Anderson, I.M., Torre, C.G.: The Variational Bicomplex for the Einstein Equations. In preparation; see also G. Barnich, F. Brandt, M. Henneaux, local BRST Cohomology in the Anti-Field Formalism. To appear in Commun. Math. Phys.

  14. Torre, C.G.: Phys. Rev. D48, R2373 (1993)

    Article  Google Scholar 

  15. Rovelli, C., Smolin, L.: Nucl. Phys.B331, 80 (1990)

    Article  Google Scholar 

  16. Torre, C.G., Anderson, I.M.: Phys. Rev. Lett.70, 3525 (1993)

    Article  Google Scholar 

  17. Anderson, I.M., Torre, C.G.: Two Component Spinors and Natural Coordinates for the Prolonged Einstein Equation Manifolds. Utah State University Technical Report, 1994

  18. Penrose, R.: Ann. Phys.10, 171 (1960)

    Article  Google Scholar 

  19. Penrose, R., Rindler, W.: Spinors and Space-Time. Vol.1, Cambridge: Cambridge University Press, 1984

    Google Scholar 

  20. Torre, C.G.: J. Math. Phys.36, 2113 (1995)

    Article  Google Scholar 

  21. Saunders, D.: The Geometry of Jet Bundles. Cambridge: Cambridge University Press, 1989

    Google Scholar 

  22. Tsujishita, T.: Osaka J. Math.19, 311 (1982)

    Google Scholar 

  23. Tsujishita, T.: Sugaku Exposition2, 1 (1989)

    Google Scholar 

  24. Ibragimov, N.: Transformation Groups Applied to Mathematical Physics. Boston: D. Reidel, 1985

    Google Scholar 

  25. Thomas, T.Y.: Differential Invariants of Generalized Spaces, Cambridge: Cambridge University Press, 1934

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by S.-T. Yau

Dedicated to the memory of H. Rund

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anderson, I.M., Torre, C.G. Classification of local generalized symmetries for the vacuum Einstein equations. Commun.Math. Phys. 176, 479–539 (1996). https://doi.org/10.1007/BF02099248

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02099248

Keywords

Navigation