Communications in Mathematical Physics

, Volume 142, Issue 1, pp 169–192 | Cite as

Stark Wannier ladders

  • F. Bentosela
  • V. Grecchi


We study the Schrödinger equation for an electron in a one dimensional crystal submitted to a constant electric field. We prove the existence of ladders of resonances, the imaginary part of which is exponentially small with the field.


Neural Network Statistical Physic Complex System Imaginary Part Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adler, J., Froese, R.: Commun. Math. Phys.100, 161 (1985)CrossRefGoogle Scholar
  2. 2.
    Bentosela, F., Grecchi, V., Zironi, F.: J. Phys. C: Solid State Phys.15, 7119 (1982)CrossRefGoogle Scholar
  3. 3.
    Berezhkovskii, A.M., Ovchinnikov, A.A.: Sov. Phys. Solid. Stdr.18, 1908 (1976)Google Scholar
  4. 4.
    Briet, P., Combes, J.M., Duclos, P.: Proceedings of the Holzhau conference on partial differential equations. Teuber Texte zur Mathematik (1988)Google Scholar
  5. 5.
    Buslaev, Dmitrieva: Bloch electrons in an external electric field (preprint Leningrad 1989)Google Scholar
  6. 6.
    Combes, J.M., Hislop, P.: Stark ladder resonances for small electric fields (preprint CPT-Marseille 1989)Google Scholar
  7. 7.
    Eastham: The spectral theory of periodic differential equations. Edinburgh: Scottish Academic Press 1973Google Scholar
  8. 8.
    Helffer, B., Bjöstrand, J.: Ann. l'Inst. Henri-Poincaré,42, 127 (1985)Google Scholar
  9. 9.
    Herbst, I., Howland, J.: Commun. Math. Phys.80, 23 (1981)CrossRefGoogle Scholar
  10. 10.
    März, Christoph: Thesis, Université de Paris Sud, Centre d'Orsay, June 1990Google Scholar
  11. 11.
    Nenciu, A., Nenciu, G.: J. Phys. A. Math. Gen.14, 2817 (1981);15, 3313 (1982) Nenciu, G.: Proceedings of the Poiana-Brasov School (1989)CrossRefGoogle Scholar
  12. 12.
    Simon, B.: Quantum mechanics for Hamiltonians defined as quadratic forms. Princeton, NJ: Princeton University Press 1971Google Scholar
  13. 13.
    Wannier, G.: Phys. Rev117, 432 (1960);181, 1364 (1969)CrossRefGoogle Scholar
  14. 14.
    Weinstein, I., Keller, J.: SIAM J. Appl. Math.47, 941 (1987)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • F. Bentosela
    • 1
    • 2
  • V. Grecchi
    • 3
  1. 1.Case 907CPT-CNRSMarseille, Cedex 9France
  2. 2.Faculté des Sciences de LuminyUniversité Aix-Marseille IIMarseilleFrance
  3. 3.Dipartimento di MatematicaUniversità di BolognaItaly

Personalised recommendations