Advertisement

Communications in Mathematical Physics

, Volume 142, Issue 1, pp 139–168 | Cite as

Adiabatic limits of the η-invariants the odd-dimensional Atiyah-Patodi-Singer problem

  • Ronald G. Douglas
  • Krzysztof P. Wojciechowski
Article

Abstract

We study the η-invariant of boundary value problems of Atiyah-Patodi-Singer type. We prove the formula for the spectral flow of the families overS1. Assuming a product structure in a collar neighbourhood of the boundary, we show that the η-invariant behaves the same way as on a closed manifold. We also study the “adiabatic” limit of the spectral invariants. In nice cases we are able to split them into a contribution from the interior, one from the cylinder, and an error term. Then we show that the error term disappears with the increasing length of the cylinder.

Keywords

Neural Network Manifold Statistical Physic Complex System Error Term 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References for Appendix B

  1. [B1]
    Bojarski, B.: The abstract Linear Conjugation Problem and Fredholm Pairs of subspaces. In: In Memoriam I. N. Vekua. Tbilisi 1979, 43–69 (in Russian)Google Scholar
  2. [B2]
    Pressley, A.N., Segal, G.B.:Loop Groups. Oxford: Oxford University Press, 1986Google Scholar
  3. [B3]
    Wojciechowski, K.P.: A note on the space of pseudodifferential projections with the same principal symbol. J. Op. Theory15, 207–216 (1986)Google Scholar

References

  1. 1.
    Atiyah, M.F., Bott, R., Patodi, V.K.: On the heat equation and index theorem. Invent. Math.19, 279–330 (1973)CrossRefGoogle Scholar
  2. 2.
    Atiyah, M.F., Patodi, V.K., Singer, I.M.: Spectral asymmetry and Riemannian geometry. I. Math. Proc. Camb. Phil. Soc.77, 43–69 (1975)Google Scholar
  3. 3.
    Atiyah, M.F., Patodi, V.K., Singer, I.M.: Spectral asymmetry and Riemannian geometry. III. Matt. Proc. Camb. Phil. Soc.79, 71–99 (1976)Google Scholar
  4. 4.
    Bismut, J-M., Cheeger, J.: Eta-invariants and their adiabatic limits. J. A. M. S.2, 33–70 (1989)Google Scholar
  5. 5.
    Bismut, J-M., Freed, D.S.: The analysis of elliptic families. II. Commun. Math. Phys.107, 103–163 (1986)CrossRefGoogle Scholar
  6. 6.
    Booss, B., Wojciechowski, K.P.: Desuspension of splitting elliptic symbols. I. Ann. Glob. Anal. Geom.3, 337–383 (1985); II. Ann. Glob. Anal. Geom.4, 349–400 (1986)CrossRefGoogle Scholar
  7. 7.
    Booss-Bavnbek, B., Wojciechowski, K.P.: Pseudodifferential projections and the topology of certain spaces of elliptic boundary value problems. Commun. Math. Phys.121, 1–9 (1989)CrossRefGoogle Scholar
  8. 8.
    Douglas, R.G., Wojciechowski, K.P.: Analytic realization of relativeK-homology on manifolds with boundary and pairing withK-cohomology. Z. Anal. Anwendunger8, 485–494 (1989)Google Scholar
  9. 9.
    Gilkey, P.B.: Invariance theory, the heat equation, and the Atiyah-Singer theorem. Wilmington, Del.: Publish or Perish 1984Google Scholar
  10. 10.
    Gromov, M., Lawson, H.B.: Positive scalar curvature and the Dirac operator. Publ. Math., Inst. Hautes Etud. Sci.58, 83–196 (1983)Google Scholar
  11. 11.
    Klimek, S., Wojciechowski, K.P.: On the phase of the determinant of the “Chiral Bag” model (in preparation)Google Scholar
  12. 12.
    McKean, H.P., Singer, I.M.: Curvature and the eigenvalues of the Laplacian. J. Diff. Geom.1, 43–69 (1968)Google Scholar
  13. 13.
    Mueller, W.: Manifolds with cusps of rank one. Lecture Notes in Math. vol. 1244, Berlin, Heidelberg, New York: Springer 1988Google Scholar
  14. 14.
    Palais, R.S. (ed.): Seminar on the Atiyah-Singer index theorem. Princeton, NJ: Princeton University Press, 1965Google Scholar
  15. 15.
    Singer, I.M.: η and the index. In: Mathematical aspects of string theory. Yau, S.-T. (ed.), pp. 239–258. Singapore: World Scientific 1988Google Scholar
  16. 16.
    Vafa, C., Witten, E.: Eigenvalue inequalities for fermions in gauge theories. Commun. Math. Phys.95, 257–274 (1984)CrossRefGoogle Scholar
  17. 17.
    Wojciechowski, K.P.: Spectral flow and the general linear conjugation problem. Simon Stevin59, 59–91 (1985)Google Scholar
  18. 18.
    Wojciechowski, K.P.: Elliptic operators and relativeK-homology groups on manifolds with boundary. C.R. Math. Rep. Acad. Sci. Canada7, 97–102 (1985)Google Scholar
  19. 19.
    Wojciechowski, K.P.: On the Calderon projections and spectral projections of the elliptic operators. J. Operator Theory20, 107–115 (1988)Google Scholar
  20. 20.
    Wojciechowski, K.P.: Elliptic boundary value problems and the holonomy theorem of Witten (in preparation)Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Ronald G. Douglas
    • 1
  • Krzysztof P. Wojciechowski
    • 2
  1. 1.Department of MathematicsSUNY at Stony BrookStony BrookUSA
  2. 2.Department of MathematicsIUPUIIndianapolisUSA

Personalised recommendations