Communications in Mathematical Physics

, Volume 142, Issue 1, pp 25–66 | Cite as

The phase structure of the two-dimensionalN=2 Wess-Zumino model

  • Steven A. Janowsky
  • Jonathan Weitsman


We construct a convergent cluster expansion for the two-dimensionalN=2 Wess-Zumino model, in a region of parameter space where there are multiple phase. As a result of this expansion, we are able to construct the infinite volume field theory and demonstrate exponential decay of correlations. We are also able to investigate the different phases of the model, develop the phase diagram, and show that the free energy of each phase vanishes.


Neural Network Free Energy Statistical Physic Phase Diagram Field Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Balaban, T., Gawedzki, K.: A low temperature expansion for the pseudoscalar Yukawa theory of quantum fields in two spacetime dimensions. Ann. Inst. H. Poincaré, Sect. A36, 271–400 (1982)Google Scholar
  2. 2.
    Borgs, C., Imbrie, J. Z.: A unified approach to phase diagrams in field theory and statistical mechanics. Commun. Math. Phys.123, 305–328 (1989)CrossRefGoogle Scholar
  3. 3.
    Cooper, A., Rosen, L.: The weakly coupled Yukawa2 field theory: cluster expansion and Wightman axioms. Trans. Am. Math. Soc.234, 1–88 (1977)Google Scholar
  4. 4.
    Glimm, J., Jaffe, A.: Quantum Physics. Berlin, Heidelberg, New York: Springer 1987Google Scholar
  5. 5.
    Glimm, J., Jaffe, A., Spencer, T.: The particle structure of the weakly coupledP(φ)2 model and other applications of high temperature expansions. Part I: Physics of Quantum Field Models, Part II: The cluster expansion. In: Constructive Quantum Field Theory (Erice 1973), Velo, G., Wightman, A. S. (eds.). Berlin, Heidelberg, New York: Springer 1973Google Scholar
  6. 6.
    —: The Wightman axioms and particle structure in the ℘(φ)2 quantum field model. Ann. Math.100, 585–632 (1974)Google Scholar
  7. 7.
    —: A convergent expansion about mean field theory. Ann. Phys.101 610–669 (1976)CrossRefGoogle Scholar
  8. 8.
    Imbrie, J. Z.: Phase diagrams and cluster expansions for low temperature ℘(φ)2 models. Part I: The phase diagram, Part II: The Schwinger functions. Commun. Math. Phys.82, 261–343 (1981)CrossRefGoogle Scholar
  9. 9.
    Imbrie, J.Z., Janowsky, S.A., Weitsman, J.: Space-dependent Dirac operators and effective quantum field theory for fermions. Commun. Math. Phys.135, 421–441 (1991)Google Scholar
  10. 10.
    Jaffe, A., Lesniewski, A.: A Priori estimates forN=2 Wess-Zumino models on a cylinder. Commun. Math. Phys.114, 553–575 (1988)CrossRefGoogle Scholar
  11. 11.
    Jaffe, A., Lesniewski, A., Weitsman, J.: Index of a family of Dirac operators on loop space. Commun. Math. Phys.112, 75–88 (1987)CrossRefGoogle Scholar
  12. 12.
    —: The two-dimensional,N=2 Wess-Zumino models on a cylinder. Commun. Math. Phys.114, 147–165 (1988)CrossRefGoogle Scholar
  13. 13.
    —: The loop spaceS 1→ℝ and supersymmetric quantum fields. Ann. Phys.183, 337–351 (1988)CrossRefGoogle Scholar
  14. 14.
    Janowsky, S. A.: The phase structure of the two-dimensionalN=2 Wess-Zumino model. Harvard University thesis (1990)Google Scholar
  15. 15.
    Osterwalder, K., Schrader, R.: Axioms for Euclidean Green's functions. Part I: Commun. Math. Phys.31, 83–112 (1973); Part II: Commun. Math. Phys.42, 281–305 (1975)CrossRefGoogle Scholar
  16. 16.
    Rosen, L.: Renormalization of the Hilbert space in the mass shift model. J. Math. Phys.13, 918–927 (1972)CrossRefGoogle Scholar
  17. 17.
    Seiler, E., Simon, B.: Bounds on the Yukawa2 quantum field theory: Upper bound on the pressure, Hamiltonian bound and linear lower bound. Commun. Math. Phys.45, 99–114 (1975)CrossRefGoogle Scholar
  18. 18.
    Simon, B.: Trace ideals and their applications, (London Mathematical Society Lecture Note Series35) Cambridge: Cambridge University Press 1979Google Scholar
  19. 19.
    Weitsman, J.: A supersymmetric field theory in infinite volume. Harvard University thesis (1988)Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Steven A. Janowsky
    • 1
  • Jonathan Weitsman
    • 1
    • 2
  1. 1.Department of PhysicsHarvard UniversityCambridgeUSA
  2. 2.Department of MathematicsM.I.T.BerkeleyUSA

Personalised recommendations