Skip to main content
Log in

Non-self-dual Yang-Mills connections with quadrupole symmetry

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We prove the existence of non-self-dual Yang-Mills connections onSU(2) bundles over the four-sphere, specifically on all bundles with second Chern number not equal±1. We study connections equivariant under anSU(2) symmetry group to reduce the effective dimensionality from four to one, and then use variational techniques. The existence of non-self-dualSU(2) YM connections on the trivial bundle (second Chern number equals zero) has already been established by Sibner, Sibner, and Uhlenbeck via different methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • [Ad] Adams, R.A.: Sobolev spaces. New York: Academic Press 1975

    Google Scholar 

  • [ADHM] Atiyah, M.F., Drinfeld, V.G., Hitchin, N.J., Manin, Y.I.: Construction of instantons. Phys. Lett. A65, 185 (1978)

    Article  Google Scholar 

  • [AJ] Atiyah, M.F., Jones, J.D.S.: Topological aspects of Yang-Mills theory. Commun. Math. Phys.61, 97 (1978)

    Article  Google Scholar 

  • [ASSS] Avron, J.E., Sadun, L., Segert, J., Simon, B.: Chern numbers, quaternions, and Berry's phases in fermi systems. Commun. Math. Phys.124, 595 (1989)

    Article  Google Scholar 

  • [Au] Aubin, T.: Nonlinear analysis on manifolds. Monge-Amperè equations. Berlin, Heidelberg, New York: Springer 1982

    Google Scholar 

  • [Ber] Berger, M.S.: Nonlinearity and functional analysis. New York: Academic Press 1977

    Google Scholar 

  • [BoMo] Bor, G., Montgomery, R.:SO(3) invariant Yang-Mills fields which are not self-dual. Proceedings of the MSI Workshop on Hamiltonian Systems, Transformation Groups, and Spectral Transform Methods, held in Montreal, Canada, Oct. 1989

  • [BL] Bourguignon, J.P., Lawson, H.B.: Stability and isolation phenomena for Yang-Mills equations. Commun. Math. Phys.79, 189 (1982)

    Article  Google Scholar 

  • [BLS] Bourguignon, J.P., Lawson, H.B., Simons, J.: Stability and gap phenomena for Yang-Mills fields. Proc. Natl. Acad. Sci. USA76, 1550 (1979)

    Google Scholar 

  • [BPST] Belavin, A.A., Polyakov, A.M., Schwartz, A.S., Tyupkin, Yu.: Pseudo-particle solutions of the Yang-Mills equations. Phys. Lett. B59, 85 (1975)

    Article  Google Scholar 

  • [CDD] Choquet-Bruhat, Y., DeWitt-Morette, C., Dillard-Bleick, M.: Analysis, manifolds, and physics. Amsterdam: North-Holland 1982

    Google Scholar 

  • [FHP1] Forgacs, P., Horvath, Z., Palla, L.: An exact fractionally charged self-dual solution. Phys. Rev. Lett.46 392 (1981)

    Article  Google Scholar 

  • [FHP2] Forgacs P., Horvath, Z., Palla, L.: One can have noninteger topological charge. Z. Phys. C—Particles and Fields12, 359–360 (1982)

    Article  Google Scholar 

  • [FU] Freed, D.S., Uhlenbeck, K.K.: Instantons and four-manifolds. Berlin, Heidelberg, New York: Springer 1984

    Google Scholar 

  • [I] Itoh, M.: Invariant connections and Yang-Mills solutions. Trans. Am. Math. Soc.267, 229 (1981)

    Google Scholar 

  • [JT] Jaffe, A., Taubes, C.: Vortices and monopoles. Boston: Birkhäuser 1980

    Google Scholar 

  • [LU] Ladyzhenskaya, O., Ural'tseva, N.: Linear and quasilinear elliptic partial differential equations. New York: Academic Press 1968

    Google Scholar 

  • [Ma1] Manin, Yu.: New exact solutions and cohomology analysis of ordinary and supersymmetric Yang-Mills equations. Proc. Steklov Inst. of Math.165, 107 (1984)

    Google Scholar 

  • [Ma2] Manin, Yu.: Gauge field theory and complex geometry. Berlin, Heidelberg, New York: Springer 1988

    Google Scholar 

  • [P1] Parker, T.: Unstable Yang-Mills fields. Preprint 1989

  • [P2] Parker, T.: Non-minimal Yang-Mills fields and dynamics. Invent. Math. (in press)

  • [Pal] Palais, R.S.: The principle of symmetric criticality. Commun. Math. Phys.69, 19 (1979)

    Google Scholar 

  • [RS] Reed, M., Simon, B.: Methods of modern mathematical physics, Vol. I, II. New York: Academic Press 1980

    Google Scholar 

  • [SaU] Sacks, J., Uhlenbeck, K.: On the existence of minimal immersions of 2-spheres. Ann. Math.113(2), 1–24 (1982)

    Google Scholar 

  • [Sed] Sedlacek, S.: A direct method for minimizing the Yang-Mills functional over 4-manifolds. Commun. Math. Phys.86, 515–527 (1982)

    Article  Google Scholar 

  • [SS1] Sadun, L., Segert, J.: Chern numbers for fermionic quadrupole systems. J. Phys. A22, L111 (1989)

    Google Scholar 

  • [SS2] Sadun, L., Segert, J.: Non-self-dual Yang-Mills connections with nonzero Chern number. Bull. Am. Math. Soc.24, 163–170 (1991)

    Google Scholar 

  • [SS3] Sadun, L., Segert, J.: Stationary points of the Yang-Mills action. Commun. Pure Appl. Math. (in press)

  • [SiSi1] Sibner, L.M., Sibner, R.J.: Singular Sobolev connections with holonomy. Bull. Am. Math. Soc.19, 471–473 (1988)

    Google Scholar 

  • [SiSi2] Sibner, L.M., Sibner, R.J.: Classification of singular Sobolev connections by their holonomy. Commun. Math. Phys. (to appear)

  • [SSU] Sibner, L.M., Sibner, R.J., Uhlenbeck, K.: Solutions to Yang-Mills equations which are not self-dual. Proc. Natl. Acad. Sci USA86, 860–863 (1989)

    Google Scholar 

  • [T1] Taubes, C.H.: Stability in Yang-Mills theories. Commun. Math. Phys.91, 235 (1983)

    Article  Google Scholar 

  • [T2] Taubes, C.H.: On the equivalence of the first and second Order equations for gauge theories. Commun. Math. Phys.75, 207 (1980)

    Article  Google Scholar 

  • [Uh1] Uhlenbeck, K.: Removable singularities in Yang-Mills fields. Commun. Math. Phys.83, 11–29 (1982)

    Article  Google Scholar 

  • [Uh2] Uhlenbeck, K.: Connections withL p bounds on curvature. Commun. Math. Phys.83, 31–42 (1982)

    Article  Google Scholar 

  • [Uh3] Uhlenbeck, K.: Variational problems for gauge fields. In Seminar on Differential Geometry. Yau, S.-T. (ed.). Princeton: Princeton University Press 1982

    Google Scholar 

  • [Ur] Urakawa, H.: Equivariant theory of Yang-Mills connections over Riemannian manifolds of cohomogeneity one. Indiana Univ. Math. J.37, 753 (1988)

    Article  Google Scholar 

  • [Bo] Bor, G.: Yang-Mills fields which are not self-dual. Commun. Math. Phys.145, 393–410 (1992)

    Google Scholar 

  • [P3] Parker, T.H.: A Morse Theory for Equivariant Yang-Mills. Duke Math. J. (in press)

  • [W] Wang, H.-Y.: The existence of non-minimal solutions to the Yang-Mills equation with groupSU(2) onS 2×S 2 andS 1×S 3. J. Diff. Geom.34, 701–767 (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by T. Spencer

Research partially supported by NSF Grant DMS-8806731

Most of this research was done while the author was a Bantrell Fellow at the California Institute of Technology, and was partially supported by NSF Grant DMS-8801918

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sadun, L., Segert, J. Non-self-dual Yang-Mills connections with quadrupole symmetry. Commun.Math. Phys. 145, 363–391 (1992). https://doi.org/10.1007/BF02099143

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02099143

Keywords

Navigation