Communications in Mathematical Physics

, Volume 136, Issue 3, pp 633–644 | Cite as

Correlation function of fields in one-dimensional Bose-gas

  • V. E. Korepin
  • N. A. Slavnov


Correlation function of fields is presented as a Fredholm minor, at finite coupling constant in one-dimensional Bose gas.


Neural Network Statistical Physic Correlation Function Complex System Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lenard, A.: One-dimensional impenetrable bosons in thermal equilibrium. J. Math. Phys.7, 1268–1272 (1966)Google Scholar
  2. 2.
    Jimbo, M., Miwa, T., Mori, Y., Sato, M.: Density matrix of an impenetrable Bose gas and the fifth Painleve transcendent. Physica D1, 80–158 (1980)Google Scholar
  3. 3.
    Its, A.R., Izergin, A.G., Korepin, V.E.: Long-distance asymptotics of temperature correlators of Impenetrable bose gas. Commun. Math. Phys.130, 471–488 (1990)Google Scholar
  4. 3a.
    Its, A.R., Izergin, A.G., Korepin, V.E., Slavnov, N.A.: Differential equations for quantum correlation functions. Int. J. Mod. Phys. B4, 1003–1037 (1990)Google Scholar
  5. 4.
    Izergin, A.G., Korepin, V.E.: The quantum inverse scattering method approach to correlation functions. Commun. Math. Phys.113, 117–190 (1987)Google Scholar
  6. 5.
    Korepin, V.E.: Generating functional of correlation functions for nonlinear Schrödinger equation. Funct. Anal.23 (1), 15–23 (1989)Google Scholar
  7. 6.
    Korepin, V.E.: Calculations of norms of Bethe wave functions. Commun. Math. Phys.86, 391–418 (1982)Google Scholar
  8. 7.
    Bogoliubov, N.M., Korepin, V.E.: Correlation functions of one-dimensional Bose gas in thermal equilibrium. Theor. Math. Phys.60, (2), 262–269 (1984)Google Scholar
  9. 8.
    Korepin, V.E., Slavnov, N.A.: The time dependent correlation function of an impenetrable Bose gas as a Fredholm minor. Commun. Math. Phys.129, 103 (1990)Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • V. E. Korepin
    • 1
  • N. A. Slavnov
    • 1
  1. 1.Institute for Theoretical PhysicsState University of New York at Stony BrookStony BrookUSA

Personalised recommendations