Advertisement

Communications in Mathematical Physics

, Volume 136, Issue 3, pp 519–542 | Cite as

Lie superalgebraic approach to super Toda lattice and generalized super KdV equations

  • Takeo Inami
  • Hiroaki Kanno
Article

Abstract

We propose a super Lax type equation based on a certain class of Lie superalgebra as a supersymmetric extension of generalized (modified) KdV hierarchy. We are able to construct an infinite set of conservation laws and the consistent time evolution generators for generalized modified super KdV equations. Thefirst few of the conserved currents, the (modified) super KdV equation and the super Miura transformation are worked out explicitly in the case of twisted affine Lie superalgebraOSp(2/2)(2).

Keywords

Neural Network Complex System Time Evolution Nonlinear Dynamics Quantum Computing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zamolodchikov, A.: Infinite additional symmetries in two-dimensional conformal field theory. Theor. Math. Phys.65, 1206–1213 (1986)Google Scholar
  2. 2.
    Drinfel'd, V. G., Sokolov, V. V.: Lie algebras and equations of Korteweg-de Vries Types. Sov. J. Math. 30, 1975–2036 (1985)Google Scholar
  3. 3.
    Gervais, J. J., Neveu, A.: Dual string spectrum in Polyakov's quantization (II): Mode separation. Nucl. Phys.B 209, 125–145 (1982); Khovanova, T. G.: The Gel'fand-Dikii algebras and the Virasoro algebra. Funct. Anal. Appl.20, 332–334 (1987); Yamagishi, K.: The KP hierarchy and extended Virasoro algebras. Phys. Lett.B205, 466–470 (1988); Mathieu, P.: Extended classical conformal algebras and the second Hamiltonian structure of Lax equations. Phys. Lett.B208, 101–106 (1988); Bakas, I.: Hamiltonian reduction and conformal symmetries in two dimensions. Phys. Lett.B219, 283–290 (1989); Higher spin fields and the Gelfand-Dickey algebra. Commun. Math. Phys.123, 627–639 (1989); Fateev, V. A., Lykyanov, S. L.: The models of two-dimensional conformal quantum field theory with Zn symmetry. Int. J. Mod. Phys.A3, 507–520 (1988); Belavin, A. A.: KdV-type equations andW-algebras. Adv. Stud. Pure Math.19, 117–125 (1989); Smit, J.-D.: A quantum group structure in integrable conformal field theories. Commun. Math. Phys.128, 1–37 (1990)Google Scholar
  4. 4.
    Eguchi, T., Yang, S.-K.: Deformations of conformal field theories and soliton equations. Phys. Lett.B 224, 373–378 (1989); Hollowood, T. J., Mansfield, P.: Rational conformal field theories at, and away from, criticality as Toda field theories. Phys. Lett.B226 73–79 (1989); Smirnov, F. A.: The perturbedc<1 conformal field theories as reductions of sine-Gordon model. Int. J. Mod. Phys.A4, 4213–4220 (1989); Kupershmidt, B. A., Mathieu, P.: Quantum Kortewg-de Vries like equations and perturbed conformal field theories. Phys. Lett.B227, 245–250 (1989)Google Scholar
  5. 5.
    Mikhailov, A. V., Olshanetsky, M. A., Perelomov, A. M.: Two-dimensional generalized Toda lattice. Commun. Math. Phys.79, 473–488 (1981)Google Scholar
  6. 6.
    Leites, D. A., Saveliev, M. V., Serganova, V. V.: Embeddings of Lie superalgebraOSp(1/2) and the associated nonlinear supersymmetric equations. Preprint, IHEP 85-81 (1985); Leznov, A. N., Saveliev, M. V.: Two-dimensional supersymmetric nonlinear equations associated with embeddings of the subsuperalgebraOSP(1/2) in Lie superalgebras. Theor. Math. Phys.61, 1056–1059 (1985)Google Scholar
  7. 7.
    Leznov, A. N., Saveliev, M. V.: Representation of zero curvature for the system of nonlinear partial differential equationsz α,zz=exp (Kx)α and its integrability. Lett. Math. Phys.3, 489–494 (1979); Representation theory and integration of nonlinear spherically symmetric equations to gauge theories. Commun. Math. Phys.74, 111–118; (1980); Exactly and completely integrable nonlinear dynamical systems. Acta Appl. Math.16, 1–74 (1989)Google Scholar
  8. 8.
    Kac, V. G.: Infinite dimensional Lie algebras. Cambridge University Press 1985Google Scholar
  9. 9.
    Olshanetsky, M. A.: Supersymmetric two-dimensional Toda lattice. Commun. Math. Phys.88, 63–76 (1983); Saveliev, M. V.; Integrable supermanifolds and associated nonlinear equations. Theor. Math. Phys.59, 560–563 (1984); Integrable graded manifolds and nonlinear equations. Commun. Math. Phys.95, 199–216: (1984); Andreev, V. A.: Odd bases of Lie superlagebras and integrable equations. Theor. Math. Phys.72, 758–764 (1988); Ikeda, K.: A supersymmetric extension of the Toda lattice hierarchy. Lett. Math. Phys.14, 321–328 (1987)Google Scholar
  10. 10.
    Manin, Yu. I., Radul, A. O.: A supersymmetric extension of the Kadomtsev-Petviashvili hierarchy. Commun. Math. Phys.98, 65–77 (1985)Google Scholar
  11. 11.
    Kac, V. G.: Lie superlgebras. Adv. Math.26, 8–96 (1977)Google Scholar
  12. 12.
    Frappat, A., Sciarrino, A., Sorba, P.: Structure of basic Lie superalgebras and their affine extensions. Commun. Math. Phys.121, 457–500 (1989)Google Scholar
  13. 13.
    Zakharov, V. E., Shabat, A. B.: A scheme of integrating nonlinear equation of mathematical physics by the method of inverse scattering problem I and II. Funct. Anal. Appl.8, 226–335 (1974) and13, 166–174 (1979)Google Scholar
  14. 14.
    Di Vecchia, P., Ferrara, S.: Classical solutions in two-dimensional supersymmetric field theories. Nucl. Phys.B 130, 93–104 (1977); Chaichan, M., Kulish, P. P.: On the method of inverse scattering problem and Bäcklund transformations for supersymmetric equations. Phys. Lett.78B, 413–416 (1978)Google Scholar
  15. 15.
    Ferrara, S., Girardello, L., Sciuto, S.: An infinite set of conservation laws of the supersymmetric sine-Gordon theory. Phys. Lett.76B, 303–306 (1978)Google Scholar
  16. 16.
    Mathieu, P.: Superconformal algebra and supersymmetric Korteweg-de Vries equation. Phys. Lett.B 203, 287–291 (1988); Supersymmetric extension of the Korteweg-de Vries equation. J. Math. Phys.29, 2499–2506 (1988); Bilal, A., Gervais, J.-L.: Superconformal algebra and super-KdV equation. Phys. Lett211, 95–100 (1988)Google Scholar
  17. 17.
    Kupershmidt, B. A.: A super Korteweg-de Vries equation. Phys. Lett.102A, 213–215 (1984); Super Korteweg-de Vries equations associated to superextensions of the Virasoro algebra. Phys. Lett.109A, 417–423 (1985); Gürsus, M., Oğuz, Ö.: A super AKNS scheme. Phys. Lett.108A, 437–440 (1985); Khovanova, T. G.: Lie superalgebraOSp(1/2), Neveu-Schwarz superalgebra and superization of Korteweg-de Vries equation. In Group theoretical methods in physics, Proceedings of the Third Yurmala Seminar. Markov, M. A., Man'ko, V. I., Dodonov, V. V. (eds.). The Netherlands: VNU Science Press 1986; Chaichan, M., Kulish, P. P.: Superconformal algebras and their relation to integrable nonlinear systems. Phys. Lett.B183, 169–179 (1987)Google Scholar
  18. 18.
    Nam, S.-K.: On supersymmetric extended conformal algebras and super KP hierarchy. Int. J. Mod. Phys.A 4, 4083–4095 (1989)Google Scholar
  19. 19.
    Kac, V. G.: Infinite-dimensional algebras, Dedekind's η-functions, classical Möbius function and the very strange formula. Adv. Math.30, 85–136 (1978)Google Scholar
  20. 20.
    Inami, T., Kanno, H.:N=2 super KdV and super sine-Gordon equations based on Lie superalgebraA(1,1)(1). Yukawa Institute preprint, YITP/K-895Google Scholar
  21. 21.
    Yamanaka, I., Sasaki, R.: Super Virosoro algebra and solvable supersymmetric quantum field theories. Progr. Theor. Phys.79, 1167–1184 (1988)Google Scholar
  22. 22.
    Date, E., Jimbo, M., Kashiwara, M., Miwa, T.: Transformation groups for soliton equation. In: Proceedings of RIMS symposium on nonlinear integrable systems. Jimbo, M., Miwa, T. (eds.) Singapore: World Scientific 1983Google Scholar
  23. 23.
    Mulase, M.: Solvability of the super KP equation and a generalization of the Birkoff decomposition. Invent. Math.92, 1–46 (1987); Kac, V.G., van de Leur, J. W.: Super boson-fermion correspondence. Ann. Inst. Fourier. Grenoble37, 99–137 (1987); Ueno, K., Yamada, H.: Super-Kadomtsev-Petviashvili hierarchy and super-Grassmann manifold. Adv. Stud. Pure Math.16, 373-426 (1988); Le Clair, A.: Supersymmetric KP hierarchy: Free field construction. Nucl. Phys.B315, 425–438 (1989)Google Scholar
  24. 24.
    Gel'fand, I. M., Dikii, L. A.: A family of Hamiltonian structures connected with integrable nonlinear differential equations. Preprint No. 136, Inst. Applied Math., Moscow 1978Google Scholar
  25. 25.
    Inami, T., Matsuo, Y., Yamanaka, I.: Extended conformal algebras withN=1 supersymmetry. Phys. Lett.B 215, 701–705 (1989)Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Takeo Inami
    • 1
  • Hiroaki Kanno
    • 1
  1. 1.Research Institute for Fundamental PhysicsKyoto UniversityKyotoJapan

Personalised recommendations