Advertisement

Communications in Mathematical Physics

, Volume 136, Issue 3, pp 487–499 | Cite as

The algebra of Weyl symmetrised polynomials and its quantum extension

  • I. M. Gelfand
  • D. B. Fairlie
Article

Abstract

The Algebra of Weyl symmetrised polynomials in powers of Hamiltonian operatorsP andQ which satisfy canonical commutation relations is constructed. This algebra is shown to encompass all recent infinite dimensional algebras acting on two-dimensional phase space. In particular the Moyal bracket algebra and the Poisson bracket algebra, of which the Moyal is the unique one parameter deformation are shown to be different aspects of this infinite algebra. We propose the introduction of a second deformation, by the replacement of the Heisenberg algebra forP, Q with aq-deformed commutator, and construct algebras ofq-symmetrised Polynomials.

Keywords

Neural Network Phase Space Complex System Nonlinear Dynamics Quantum Computing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Weyl, H.: The theory of groups and quantum mechanics (1932) (reprinted Dover Publications)Google Scholar
  2. 2.
    Moyal, J.: Proc. Camb. Phil. Soc.45, 99–124 (1949); Baker, G.: Phys. Rev.109, 2198–2206 (1958); Fairlie, D. B.: Proc. Camb. Phil. Soc.60, 581–586 (1864)Google Scholar
  3. 3.
    Gelfand, I. M., Dorfman, I. Ya., J. Funct. Anal. Appl.13, 248 (1980);14, 248 (1980);15, 173 (1981);16, 241 (1982). (Russian originals; Funksional'ni Analizi i ego Prilozhenia13, (4) 13–3? (1980);14, (3) 17–74 (1980)15 (3) 23–40 (1981);16, (4) 1–9 (1982)Google Scholar
  4. 4.
    Fairlie, D. B., Fletcher, P., Zachos, C. K.: Phys. Lett.B218, 203 (1989); J. Math. Phys.31 1088 (1990); Fairlie, D. B., Zachos, C. K.: Phys. Lett.B224, 101 (1989).Google Scholar
  5. 5.
    Hoppe, J.: MIT thesis (1982).Google Scholar
  6. 6.
    Bakas, I.: The Structure of theW algebra, U. Maryland UMPP 90-085Google Scholar
  7. 7.
    Bender, C. M., Dunne, G.: Phys. Rev.D40, 3504 (1989)Google Scholar
  8. 8.
    Bayen, F., Flato, M., Fronsdal, C., Lichnerowicz, A., Sternheimer, D.: Ann. Phys. N. Y.111, 61, 111 (1978); Averson, A.: Commun. Math. Phys.89, 77–102 (1983); Estrada, R., Garcia-Bondia, J. M., Varilly, J. C.: J. Math. Phys.30, 2789 (1989)Google Scholar
  9. 9.
    Drinfeld, V. G.: Sov. Math. Doklady27, 68 (1983)Google Scholar
  10. 10.
    Macfarlane: A. J.: J. Phys.A22, 4581 (1989); Biedenharn, L. C.: J. Phys.A22, L873 (1989); Floratos, E. C.: Phys. Lett233B, 395 (1989)Google Scholar
  11. 11.
    Manin, Yu. I.: Annales de L'Institute Fourier, Grenoble37, 191 (1987); Commun. Math. Phys.123, 163 (1989)Google Scholar
  12. 12.
    Zamolodchikov, A. B.: Teo. Mat. Fiz.65, 347 (1985); Fateev, V. A., Lykyanov S.: Int. J. Mod. Phys.A3, 507 (1988)Google Scholar
  13. 13.
    Pope, C. N., Romans, L. J., Shen, X.:W and the Racah-Wigner algebra, preprint, CTP TAMU-72/89, USC-89/HEP040Google Scholar
  14. 14.
    Bakas, I., Kiritsis, E.: Bosonic realisation of a universalW-algebra andZ parafermions, preprint, LBL-28714, UCB-PTH-90/8, UMD-PP90-160Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • I. M. Gelfand
    • 1
  • D. B. Fairlie
    • 1
  1. 1.Harvard UniversityCambridgeUSA

Personalised recommendations