Skip to main content
Log in

Normalizability of one-dimensional quasi-exactly solvable Schrödinger operators

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We completely determine necessary and sufficient conditions for the normalizability of the wave functions giving the algebraic part of the spectrum of a quasi-exactly solvable Schrödinger operator on the line. Methods from classical invariant theory are employed to provide a complete list of canonical forms for normalizable quasi-exactly solvable Hamiltonians and explicit normalizability conditions in general coordinate systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alhassid, Y., Engel, J., Wu, J.: Algebraic approach to the scattering matrix. Phys. Lett.53, 17–20 (1984)

    Article  Google Scholar 

  2. Alhassid, Y., Gürsey, F., Iachello, F.: Group theory approach to scattering. Ann. Phys.148, 346–380 (1983)

    Article  Google Scholar 

  3. Alhassid, Y., Gürsey, F., Iachello, F.: Group theory approach to scattering. II. The euclidean connection. Ann. Phys.167, 181–200 (1986)

    Google Scholar 

  4. Galindo, A., Pascual, P.: Quantum Mechanics I. Berlin, Heidelberg, New York: Springer 1990

    Google Scholar 

  5. González-López, A., Kamran, N., Olver, P.J.: Lie algebras of differential operators in two complex variables. Am. J. Math. to appear

  6. González-López, A., Kamran, N., Olver, P.J.: Quasi-exactly solvable Lie algebras of first order differential operators in two complex variables. J. Phys. A24, 3995–4008 (1991)

    Google Scholar 

  7. González-López, A., Kamran, N., Olver, P.J.: New quasi-exactly solvable Hamiltonians in two dimensions. Preprint, Univ. of Minnesota 1992

  8. Gorsky, A.: Relationship between exactly solvable and quasi-exactly solvable versions of quantum mechanics with conformal block equations in 2D theories. JETP Lett.54, 289–292 (1991)

    Google Scholar 

  9. Grace, J.H., Young, A.: The Algebra of Invariants. Cambridge: Cambridge Univ. Press 1903

    Google Scholar 

  10. Gradshteyn, I.S., Ryzhik, I.W.: Table of Integrals, Series and Products. New York: Academic Press 1965

    Google Scholar 

  11. Gurevich, G.B.: Foundations of the Theory of Algebraic Invariants. Groningen, Holland: P. Noordhoff 1964

    Google Scholar 

  12. Kamran, N., Olver, P.J.: Lie algebras of differential operators and Lie-algebraic potentials. J. Math. Anal. Appl.145, 342–356 (1990)

    Article  Google Scholar 

  13. Landau, L.D., Lifshitz, E.M.: Quantum Mechanics (Non-relativistic Theory). Course of Theoretical Physics, vol3. New York: Pergamon Press 1977

    Google Scholar 

  14. Levine, R.D.: Lie algebraic approach to molecular structure and dynamics. In: Mathematical Frontiers in Computational Chemical Physics, D.G. Truhlar (ed.) IMA Volumes in Mathematics and its Applications, vol.15. Berlin Heidelberg, New York: Springer 1988, pp. 245–261

    Google Scholar 

  15. Littlejohn, L.L.: On the classification of differential equations having orthogonal polynomial solutions. Ann. di Mat.138, 35–53 (1984)

    Article  Google Scholar 

  16. Miller, W., Jr.: Lie Theory and Special Functions. New York: Academic Press 1968

    Google Scholar 

  17. Morozov, A.Y., Perelomov, A.M., Rosly, A.A., Shifman, M.A., Turbiner, A.V.: Quasi-exactly solvable quantal problems: one-dimensional analogue of rational conformal field theories. Int. J. Mod. Phys.5, 803–832 (1990)

    Article  Google Scholar 

  18. Reed, M., Simon, B.: Functional Analysis, vol.2. New York: Academic Press 1975

    Google Scholar 

  19. Shifman, M.A.: New findings in quantum mechanics (partial algebraization of the spectral problem). Int. J. Mod. Phys. A126, 2897–2952 (1989)

    Google Scholar 

  20. Shifman, M.A.: Quasi-exactly solvable spectral problems and conformal field theory. preprint, Theoretical Physics Inst., Univ. of Minnesota 1992.

  21. Shitman, M.A., Turbiner, A.V.: Quantal problems with partial algebraization of the spectrum. Commun. Math. Phys.126, 347–365 (1989)

    Google Scholar 

  22. Turbiner, A.V.: Quasi-exactly solvable problems andsl(2) algebra. Commun. Math. Phys.118, 467–474 (1988)

    Article  Google Scholar 

  23. Turbiner, A.V.: Lie algebras and polynomials in one variable. J. Phys. A25, L1087-L1093 (1992)

    Google Scholar 

  24. Ushveridze, A.G.: Quasi-exactly solvable models in quantum mechanics. Sov. J. Part. Nucl.20, 504–528 (1989)

    Google Scholar 

  25. Wilczynski, E.J.: Projective Differential Geometry of Curves and Ruled Surfaces. Leipzig: B.G. Teubner 1906

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by B. Simon

Supported in Part by DGICYT Grant PS 89-0011

Supported in Part by an NSERC Grant

Supported in Part by NSF Grant DMS 92-04192

Rights and permissions

Reprints and permissions

About this article

Cite this article

González-López, A., Kamran, N. & Olver, P.J. Normalizability of one-dimensional quasi-exactly solvable Schrödinger operators. Commun.Math. Phys. 153, 117–146 (1993). https://doi.org/10.1007/BF02099042

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02099042

Keywords

Navigation