Advertisement

Communications in Mathematical Physics

, Volume 156, Issue 2, pp 333–354 | Cite as

Total cross sections inN-body problems: Finiteness and high energy asymptotics

  • Xue Ping Wang
Article

Abstract

We study the finiteness of total scattering cross sections from an arbitrary channel to a two-cluster channel and establish the high energy asymptotics for total scattering cross sections with initial two-cluster channel and those from an arbitrary channel to a two-cluster channel.

Keywords

Neural Network Statistical Physic Complex System Nonlinear Dynamics Total Cross Section 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amrein, W.O., Jauch, J.M., Sinha, K.B.: Scattering Theory in Quantum Mechanics. Reading, Mass.: W.A. Benjamin 1977Google Scholar
  2. 2.
    Amrein, W.O., Pearson D.B., Sinha, K.B.: Bounds on the total scattering cross section forN-body systems. Nuovo Cimento52A, 115–131 (1979)Google Scholar
  3. 3.
    Amrein, W.O., Sinha, K.B.: On three-body scattering cross sections. J. Phys. A: Math. Gen.15, 1567–1586 (1982)Google Scholar
  4. 4.
    Cycon, H., Froese, R., Kirsch, W., Simon, B.: Schrödinger Operators. Texts and Monographs in Physcis. Berlin, Heidelberg, New York: Springer 1987Google Scholar
  5. 5.
    Enss, V., Simon, B.: Finite total cross-sections in nonrelativistic quantum mechanics. Commun. Math. Phys.76, 177–209 (1980)Google Scholar
  6. 6.
    Hunziker, W.: Potential scattering at high energies. Helv. Phys. Acta36, 838–856 (1963)Google Scholar
  7. 7.
    Isozaki, H.: Structure ofS-matrices for three body Schrödinger operators. Commun. Math. Phys.146, 241–258 (1992)Google Scholar
  8. 8.
    Ito, H.T., Tamura, H.: Semi-classical asymptotics for total scattering cross sections of 3-body systems. Preprint 1991Google Scholar
  9. 9.
    Jensen, A.: The scattering cross section and its Born approximation at high energies. Helv. Phys. Acta53, 398–403 (1980)Google Scholar
  10. 10.
    Landau, L.D., Lifchitz, E.M.: Quantum Mechanics, Nonrelativistic Theory. Oxford: Pergamon Press 1965Google Scholar
  11. 11.
    Perry, P., Sigal, I.M., Simon, B.: Spectral analysis ofN-body Schrödinger operators. Ann. Math.114, 519–567 (1981)Google Scholar
  12. 12.
    Reed, M., Simon, B.: Methods of Modern Mathematical Physics, IV. Analysis of Operators. New York: Academic Press 1978Google Scholar
  13. 13.
    Robert, D., Tamura, H.: Semiclassical estimates for resolvents and asymptotics for total scattering cross sections. Ann. Inst. H. Poincaré46, 415–442 (1987)Google Scholar
  14. 14.
    Robert, D., Wang, X.P.: Pointwise semiclassical asymptotics for total cross sections inN-body problems. Preprint 1992, Univ. NantesGoogle Scholar
  15. 15.
    Sigal, I.M., Soffer, A.: TheN-particle scattering problem: Asymptotic completeness for short range systems. Ann. Math.126, 35–108 (1987)Google Scholar
  16. 16.
    Skibsted, E.: Smoothness ofN-body scattering amplitudes. Preprint 1992, Univ. AarhusGoogle Scholar
  17. 17.
    Sobolev, A.V., Yafaev, D.R.: On the quasiclassical limit of total scattering cross-section in non-relativistic quantum mechanics. Ann. Inst. H. Poincaré44, 195–210 (1986)Google Scholar
  18. 18.
    Wang, X.P.: On the three-body long-range scattering problems. Lett. Math. Phys.25, 267–276 (1992)Google Scholar
  19. 19.
    Wang, X.P.: Microlocal resolvent estimates ofN-body Schrödinger operators. Preprint 1992. Univ. NantesGoogle Scholar
  20. 20.
    Wang, X.P.: Sections efficaces dans le problème àN-corps. Exposé au Séminaire EDP a l'Ecole Polytechnique, Palaiseau, December 1992Google Scholar
  21. 21.
    Yafaev, D.R.: The eikonal approximation for the Schrödinger equation. Proc. of the Steklov Inst. Math.179(2), 251–266 (1989)Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Xue Ping Wang
    • 1
  1. 1.Département de MathématiquesUniversité de NantesNantes Cedex 03France

Personalised recommendations