Communications in Mathematical Physics

, Volume 156, Issue 2, pp 301–331 | Cite as

Topological orbifold models and quantum cohomology rings

  • Eric Zaslow


We discuss the topological sigma model on an orbifold target space. We describe the moduli space of classical minima for computing correlation functions involving twisted operators, and show, through a detailed computation of an orbifold ofCP1 by the dihedral groupD4, how to compute the complete ring of observables. Through this procedure, we compute all the rings of dihedralCP1 orbifolds. We then considerCP2/D4, and show how the techniques of topologicalanti-topological fusion might be used to compute twist field correlation functions for nonabelian orbifolds.


Neural Network Correlation Function Modulus Space Quantum Computing Sigma Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Atiyah, M.F., Bott, R.: Ann. Math.88, 451–491 (1968)Google Scholar
  2. 2.
    Berglund, P., Greene, B. Hübsch, T.: Classicalvs. Landau-Ginzburg Geometry of Compacification. CERN, U.T., and Harvard preprint CERN-TH-6381/92, UTTG-21-91, HUTMP-91/B315Google Scholar
  3. 3.
    Candelas, P.: Lectures on Complex Manifolds. In: Proceedings of the Winter School on High Energy Physics, Puri, IndiaGoogle Scholar
  4. 4.
    Candelas, P., De La Ossa, X.C., Green P., Parkes, L.: Nucl. Phys.B359, 21–74 (1991)Google Scholar
  5. 5.
    Candelas, P., Horowitz, G., Strominger, A., Witten, E.: Nucl. Phys.B258, 46–74 (1985)Google Scholar
  6. 6.
    Cecotti, S., Vafa, C.: Nucl. Phys.B367, 359–461 (1991)Google Scholar
  7. 7.
    Cecotti, S., Vafa, C.: Phys. Rev. Lett68, 903–906 (1992)Google Scholar
  8. 8.
    Cecotti, S., Vafa, C.: Massive Orbifolds. SISSA and Harvard preprint SISSA 44/92/EP, HUTP-92/A013Google Scholar
  9. 9.
    Cecotti, S., Vafa, C.: On Classification ofN=2 Supersymmetric Theories. Harvard and SISSA preprints HUTP-92/A064 and SISSA-203/92/EPGoogle Scholar
  10. 10.
    Dijkgraaf, R., Verlinde, H., Verlinde, E.: Nucl. Phys.B352, 59–86 (1991)Google Scholar
  11. 11.
    Dixon, L., Harvey, J., Vafa, C., Witten, E.: Nucl. Phys.B261, 678–686 (1985), and Nucl. Phys.B274, 285–314 (1986); Dixon, L., Friedan, D., Martinec, E., Shenker, S.: Nucl Phys.B282, 13–73 (1987); Freed, D., Vafa, C.: Commun. Math. Phys.110, 349–389 (1987)Google Scholar
  12. 12.
    Fendley, P., Intrilligator, K.: Nucl. Phys.B372 533–558 (1992); Nucl. Phys.B380, 265–290 (1992)Google Scholar
  13. 13.
    Frakas, H.M., Kra, I.: Riemann Surfaces. Berlin, Heidelberg, New York: Springer 1980Google Scholar
  14. 14.
    Gato, B.: Nucl. Phys.B334, 414–430 (1990)Google Scholar
  15. 15.
    Greene, B.R., Plesser, M.R.: Nucl. Phys.B338, 15–37 (1990)Google Scholar
  16. 16.
    Greene, B.R., Vafa, C., Warner, N.: Nucl. Phys.B234, 271–390 (1989)Google Scholar
  17. 17.
    Hamidi, S., Vafa, C.: Nucl. Phys.B279, 465–513 (1989)Google Scholar
  18. 18.
    Intriligator, K., Vafa, C.: Nucl. Phys.B339, 95–120 (1990)Google Scholar
  19. 19.
    Its, A.R., Novokshenov, V.Yu.: The Isomonodromic Deformation Method in the Theory of Painlevé Equations. Lecture Notes in Mathematics1191, Berlin, Heidelberg, New York: Springer 1986; McCoy, B.M., Tracy, C.A. Wu, G.G.: Math Phys.18, 1058–1104 (1977)Google Scholar
  20. 20.
    Jackiw, R., Rebbi, C.: Phys. Rev.D13, 3398–3409 (1976); Goldstone, J., Wilczek, F.: Phys. Rev. Lett.47, 986–989 (1981)Google Scholar
  21. 21.
    Kitaev, A.V.: The Method of Isomonodromy Deformations for Degenerate Third Painlevé Equation. In: Questions of Quantum Field theory and Statistical Physics 8, (Zap. Nauch. Semin. LOMI v. 161), Popov, V.N., Kulish P.P. (eds.) Leningrad: NaukaGoogle Scholar
  22. 22.
    Leaf-Herrmann, W.A.: Harvard preprint HUTP-91/AO61Google Scholar
  23. 23.
    Lerche, W., Vafa, C., Warner, N.: Nucl. Phys.B324, 427–474 (1989)Google Scholar
  24. 24.
    Mackey, G.: Acta Math.99, 265–311 (1958)Google Scholar
  25. 25.
    Narain, K.S.: Nucl. Phys.B243, 131–156 (1984)Google Scholar
  26. 26.
    Roan, S.-S.: Intl. J. Math. (2)1, 211–232 (1990)Google Scholar
  27. 27.
    Roan, S.-S.: Intl. J. Math. (4)2, 439–455 (1991)Google Scholar
  28. 28.
    Slodowy, P.: Simple Singularities and Simple Algebraic Groups. Lecture Notes in Mathematics815, Berlin, Heidelberg, New York: Springer 1980; McKay, J.: Cartan Matrices, Finite Groups of Quaternions, and Kleinian Singularities. Proc. Am. Math. Soc.153 (1981)Google Scholar
  29. 29.
    Vafa, C.: Mod. Phys. Lett.A4, 1169–1185 (1989)Google Scholar
  30. 30.
    Wen, X.-G., Witten, E.: Nucl. Phys.B261, 651–677 (1985)Google Scholar
  31. 31.
    Witten, E.: Mirror Manifolds and Topological Field Theory. Institute for Advanced Studies preprint IASSNS-HEP 91/83Google Scholar
  32. 32.
    Witten, E.: Nucl. Phys.B202, 253–316 (1982)Google Scholar
  33. 33.
    Witten, E.: Nucl. Phys.B258, 75–100 (1985)Google Scholar
  34. 34.
    Zamolodchikov, A.B.: JETP Lett.43, 730–732 (1986)Google Scholar
  35. 35.
    Zaslow, E.: Harvard preprint HUTP-93/A010Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Eric Zaslow
    • 1
  1. 1.Lyman Laboratory of PhysicsHarvard UniversityCambridgeUSA

Personalised recommendations