Advertisement

Communications in Mathematical Physics

, Volume 156, Issue 2, pp 277–300 | Cite as

Isomorphism of two realizations of quantum affine algebra\(U_q (\widehat{\mathfrak{g}\mathfrak{l}{\text{(}}n{\text{)}}})\)

  • Jintai Ding
  • Igor B. Frenkel
Article

Abstract

We establish an explicit isomorphism between two realizations of the quantum affine algebra\(U_q (\widehat{\mathfrak{g}\mathfrak{l}{\text{(}}n{\text{)}}})\) given previously by Drinfeld and Reshetikhin-Semenov-Tian-Shansky. Our result can be considered as an affine version of the isomorphism between the Drinfield/Jimbo and the Faddeev-Reshetikhin-Takhtajan constructions of the quantum algebra\(U_q (\mathfrak{g}\mathfrak{l}(n))\).

Keywords

Neural Network Statistical Physic Complex System Nonlinear Dynamics Quantum Computing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [ABE] Abada, A., Bougourzi, H., El Gradechi, M.A.: Deformation of the Wakimoto construction. CRM-1829, 1992Google Scholar
  2. [D1] Drinfeld, V.G.: Hopf algebras and the Quantum Yang-Baxter equation. Sov. Math. Doklady32, 254–258 (1985)Google Scholar
  3. [D2] Drinfeld, V.G.: Quantum groups. Proc. ICM-86 (Berkeley), Vol. 1, New York: Academic Press 1986, pp. 789–820Google Scholar
  4. [D3] Drinfeld, V.G.: New realization of Yangian and quantum affine algebra. Sov. Math. Doklady36, 212–216 (1988)Google Scholar
  5. [D4] Drinfeld, V.G.: Quasi-Hopf algebras. Leningrad Math. J.1, 1419–1457 (1990)Google Scholar
  6. [D5] Drinfeld, V.G.: Private communicationGoogle Scholar
  7. [DF] Ding, J. Frenkel, I.B.: Spinor and oscillator representations of quantum algebras in invariant form. Preprint, Yale UniversityGoogle Scholar
  8. [DF2] Ding, J., Frenkel, I.B.: In preparationGoogle Scholar
  9. [Di] Dixmier, J.: Enveloping algebras. Amsterdam: North-Holland Publishing Company, 1977Google Scholar
  10. [FRT1] Faddeev, L.D., Reshetikhin, N.Yu., Takhtajan, L.A.: Quantization of Lie groups and Lie algebras. Algebra and Analysis (Russian)1.1, 118–206 (1989)Google Scholar
  11. [FRT2] Faddeev, L.D., Reshetikhin, N.Yu., Takhtajan, L.A.: Quantization of Lie groups and Lie algebras, Yang-Baxter equation in Integrable Systems. Advanced Series in Mathematical Physics, Vol.10, Singapore: World Scientific 1989, pp. 299–309Google Scholar
  12. [FeF] Feigin, B.L., Frenkel, E.V.: The family of representations of affine Lie algebras. Ups. Mat. Nauk43, 227–228 (1988)Google Scholar
  13. [FF] Feingold, A., Frenkel, I.B.: Classical affine algebras. Adv. Math.56, 117–172 (1985)Google Scholar
  14. [F] Frenkel, I.B.: Spinor representation of affine Lie algebras. Proc. Natl. Acad. Sci. USA77, 6303–6306 (1980)Google Scholar
  15. [FK] Frenkel, I.B., Kac, V.G.: Baqsic representations of affine Lie algebras and dual resonance model. Invent. Math.62, 23–66 (1980)Google Scholar
  16. [FJ] Frenkel, I.B., Jing, N.: Vertex representation of quantum affine algebras. Proc. Natl. Acad. Sci. USA85, 9373–9377 (1988)Google Scholar
  17. [G] Garland, H.: The arithmetic theory of loop groups. Publ. Math. IHES52, 5–136 (1980)Google Scholar
  18. [GK] Gabber, O., Kac, V.G.: On defining relations of certain infinite-dimensional Lie algebras. Bull. Am. Math. Soc.5, 185–189 (1981)Google Scholar
  19. [H] Hayashi, T.:Q-analogues of Clifford and Weyl algebras — Spinor and Oscillator representations of quantum enveloping algebra. Commun. Math. Phys.127, 129–144 (1990)Google Scholar
  20. [J1] Jimbo, M.: Aq-difference analogue ofU(g) and the Yang-Baxter equation. Lett. Math. Phys.10, 63–69 (1985)Google Scholar
  21. [J2] Jimbo, M.: QuantumR-matrix for the generalized Toda system. Commun. Math. Phys.102, 537–548 (1986)Google Scholar
  22. [J3] Jimbo, M.: Aq-analog of\(U(\mathfrak{g}\mathfrak{l}(N + 1))\), Hecke algebras, and the Yang-Baxter equation. Lett. Math. Phys.11, 247–252 (1986)Google Scholar
  23. [KP] Kac, V.G., Peterson, D.H.: Spinor and wedge representations of infinite-dimensional Lie algebras and groups. Proc. Natl. Acad. Sci. USA78, 3308–3312 (1981)Google Scholar
  24. [L] Lusztig, G.: Quantum deformations of certain simple modules over enveloping algebras. Adv. Math.70, 237–249 (1988)Google Scholar
  25. [M] Matsuo, A.: Free field representation of quantum affine algebra\(U_q \widehat{(\mathfrak{s}\mathfrak{l}{\text{)}}}\). Preprint, 1992Google Scholar
  26. [Re] Reshetikhin, N.Yu.: Private communicationGoogle Scholar
  27. [R1] Rosso, M.: Finite dimensional representations of the quantum analogue of the universal enveloping algebgra of a complex simple Lie algebra. Commun. Math. Phys.117, 558–593 (1988)Google Scholar
  28. [R2] Rosso, M.: An analogue of P.B.W. theorem and the universal R-matrix for\(U_h \mathfrak{s}\mathfrak{l}{\text{(}}N + 1{\text{)}}\). Commun. Math. Phys.124, 307–318 (1989)Google Scholar
  29. [RS] Reshetikhin, N.Yu., Semenov-Tian-Shansky, M.A.: Central extensions of quantum current groups. Lett. Math. Phys.19, 133–142 (1990)Google Scholar
  30. [S] Segal, G.: Unitary representation of some infinite dimensional groups. Commun. Math. Phys.80, 301–342 (1981)Google Scholar
  31. [TK] Tsuchiya, A., Kanie, Y.: Vertex operators in conformal, field theory onP 1 and monodromy representation of braid group. Adv. Stud. Pure Math.16, 297–372 (1988)Google Scholar
  32. [W] Wakimoto, M.: Fock representations of affine Lie algebraA 1(1). Commun. Math. Phys.104, 605–609 (1986)Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Jintai Ding
    • 1
  • Igor B. Frenkel
    • 1
  1. 1.Department of MathematicsYale UniversityNew HavenUSA

Personalised recommendations