Advertisement

Communications in Mathematical Physics

, Volume 131, Issue 3, pp 537–570 | Cite as

The weak coupling limit as a quantum functional central limit

  • L. Accardi
  • A. Frigerio
  • Y. G. Lu
Article

Abstract

We show that, in the weak coupling limit, the laser model process converges weakly in the sense of the matrix elements to a quantum diffusion whose equation is explicitly obtained. We prove convergence, in the same sense, of the Heisenberg evolution of an observable of the system to the solution of a quantum Langevin equation. As a corollary of this result, via the quantum Feynman-Kac technique, one can recover previous results on the quantum master equation for reduced evolutions of open systems. When applied to some particular model (e.g. the free Boson gas) our results allow to interpret the Lamb shift as an Ito correction term and to express the pumping rates in terms of quantities related to the original Hamiltonian model.

Keywords

Neural Network Open System Matrix Element Central Limit Quantum Computing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Accardi, L.: Quantum Markov chains. Proceedings, School of Mathematical Physics, University of Camerino 1974Google Scholar
  2. 1a.
    Accardi, L.: Quantum Stochastic Processes. Statistical Physics and Dynamical Systems. Progress in Physics, vol.10, pp. 285–302Google Scholar
  3. 2.
    Accardi, L., Bach, A.: The harmonic oscillator as quantum central limit theorem of Bernoulli processes. Prob. Th. Rel. Fields (to appear)Google Scholar
  4. 3.
    Accardi, L., Frigerio, A., Lewis, J. T.: Quantum stochastic processes. Publ. RIMS Kyoto University18, 97–133 (1982)Google Scholar
  5. 4.
    Accardi, L., Quaegebeur, J.: The Ito algebra of quantum Gaussian fields. J. Funct. Anal. (to appear)Google Scholar
  6. 5.
    Accardi, L., Frigerio, A., Lu, Y. G.: The weak coupling limit in the finite temperature case. Proceedings 2-d Ascona Conference on Stochastic Processes and Mathematical Physics, (to appear)Google Scholar
  7. 6.
    Accardi, L., Frigerio, A., Lu, Y. G.: The weak coupling limit for Fermion case. Submitted to J. Math. Phys.Google Scholar
  8. 7.
    Accardi, L., Frigerio, A., Lu, Y. G.: The weak coupling limit (II). Submitted to RIMSGoogle Scholar
  9. 7a.
    Accardi, L., Frigerio, A., Lu, Y. G.: On the weak coupling limit problem. Lecture Notes in Mathematics, vol.1396, pp 20–58. Berlin, Heidelberg, New York: Springer 1989Google Scholar
  10. 7b.
    Applebaum, D., Frigerio, A.: Stationary dilations ofW *-dynamical Systems constructed via quantum stochastic differential equations. Pitman Research Notes In Math. Series 150Google Scholar
  11. 8.
    Bratteli, O., Robinson, D. W.: Operator Algebra and Quantum Statistical Mechanics. Berlin, Heidelberg, New York: Springer 1979/81Google Scholar
  12. 9.
    Davies, E. B.: Markovian master equation. Commun. Math. Phys.39, 91–110 (1974)CrossRefGoogle Scholar
  13. 10.
    Davies, E. B.: Markovian master equations, III. Ann. Inst. H. PoincareB11, 265–273 (1975)Google Scholar
  14. 11.
    Davies, E. B.: Markovian master equations, II. Math. Ann.219, 147–158 (1976)CrossRefGoogle Scholar
  15. 12.
    Davies, E. B.: Quantum Theory of Open Systems. London New York: Academic Press 1976Google Scholar
  16. 13.
    Davies, E. B.: One-Parameter Semigroups. London and New York: Academic Press 1982Google Scholar
  17. 14.
    Dell' Antonio, G. F. (1983): Large time, small coupling behaviour of a quantum particle in a random field. Ann. Inst. Henri PoincaréXXXIX 339–384 (1983)Google Scholar
  18. 15.
    de Semedt, P., Durr, D., Lebowitz, J. L., Liverani, C.: Quantum system in contact with a thermal environment: Rigorous treatment of a simple modol. Commun. Math. Phys.120, 195–231 (1988)CrossRefGoogle Scholar
  19. 16.
    Dümcke, R.: Convergence of multi-time correlation functions in the weak and singular coupling limit. J. Math. Phys.24, 311–315 (1983)CrossRefGoogle Scholar
  20. 17.
    Dümcke, R.: Markovian limits of multi-time correlation functions for open quantum systems. Lecture Notes in Mathematics, vol.1055, pp. 113–118. Berlin, Heidelberg, New York: Springer 1984Google Scholar
  21. 18.
    Friedrichs, K. O.: On the perturbation of continuous spectra. Commun. Pure Appl. Math.1, 361–406 (1948)Google Scholar
  22. 19.
    Frigerio, A.: Construction of stationary quantum Markov processes through quantum stochastic calculus. Lecture Notes in Mathematics, vol.1136, pp. 207–222. Berlin, Heidelberg, New York: Springer 1988Google Scholar
  23. 20.
    Frigerio, A.: Quantum Poisson processes: Physical motivations and applications. Lecture Notes in Mathematics, vol.1305, pp. 107–127. Berlin, Heidelberg, New York: Springer 1988Google Scholar
  24. 21.
    Frigerio, A., Gorini, V.: N-level systems in contact with a singular reservoir, II. J. Math. Phys.17, 2123–2127 (1976)CrossRefGoogle Scholar
  25. 22.
    Frigerio, A., Gorini, V.: On stationary Markov dilations of quantum dynamical semigroups. Lecture Notes in Mathematics, vol.1055, pp. 119–125. Berlin, Heidelberg, New York: Springer 1984Google Scholar
  26. 23.
    Gorini, V., Kossakowski, A., Sudarshan, E. C. G.: Completely positive dynamical semigroups on N-level systems. J. Math. Phys.17, 821–825 (1976)Google Scholar
  27. 24.
    Hudson, R. L., Lindsay, J. M.: Uses of non-Fock quantum Brownian motion and a quantum martingale representation theorem. Lecture Notes in Mathematics, vol.1136, pp. 276–305. Berlin, Heidelberg, New York: Springer 1985Google Scholar
  28. 25.
    Hudson, R. L., Parthasarathy, K. R.: Quantum Ito's formula and stochastic evolutions. Commun. Math. Phys.91, 301–323 (1984)CrossRefGoogle Scholar
  29. 26.
    Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys.48, 119–130 (1976)CrossRefGoogle Scholar
  30. 27.
    Martin, Ph., Emch, G. G.: A rigorous model sustaining van Hove's phenomenon. Helv. Phys. Acta48, 59–78 (1975)Google Scholar
  31. 27a.
    H. Maassen: The construction of continuous dilations by solving quantum stochastic differential equations. PreprintGoogle Scholar
  32. 28.
    Palmer, P. F.: The singular coupling and weak coupling limits. J. Math. Phys.18, 527–529 (1977)CrossRefGoogle Scholar
  33. 29.
    Pulé, J. V.: The Bloch equations. Commun. Math. Phys.38, 241–256 (1974)CrossRefGoogle Scholar
  34. 30.
    Schurmann, M., von Waldenfels, W.: A central limit theorem on the free Lie group. Lecture Notes in Mathematics, vol.1303, pp. 300–318. Berlin, Heidelberg, New York: Springer 1988Google Scholar
  35. 31.
    Spohn, H.: Kinetic equations from Hamiltonian dynamics: Markovian limits. Rev. Mod. Phys.53, 569–615 (1980)CrossRefGoogle Scholar
  36. 32.
    Spohn, H., Lebowitz, J. L.: Irreversible thermodynamics for quantum systems weakly coupled to thermal reservoirs. Adv. Chem. Phys.38, 109–142 (1978)Google Scholar
  37. 33.
    van Hove, L.: Quantum mechanical perturbations giving rise to a statistical transport equation. Physica21, 617–640 (1955)Google Scholar
  38. 34.
    Haken, H.: Laser theory. Berlin, Heidelberg, New York: Springer 1984Google Scholar
  39. 35.
    von Waldenfels, W.: Ito solution of a quantum stochastic differential equation describing light emission and absorption. Lecture Notes in Mathematics, vol.1055. Berlin, Heidelberg, New York: SpringerGoogle Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • L. Accardi
    • 1
  • A. Frigerio
    • 2
  • Y. G. Lu
    • 1
  1. 1.Centro Matematico V. Volterra, Dipartimento di MatematicaUniversita'di Roma IIRomaItaly
  2. 2.Dipartimento di Matematica e InformaticaUniversita'di UdineUdineItaly

Personalised recommendations