Communications in Mathematical Physics

, Volume 131, Issue 3, pp 517–536 | Cite as

N=2 supergravity, type IIB superstrings, and algebraic geometry

  • S. Cecotti


The geometry ofN=2 supergravity is related to the variations of Hodge structure for “formal” Calabi-Yau spaces. All known results in this branch of algebraic geometry are easily recovered from supersymmetry arguments. This identification has a physical meaning for a type IIB superstring compactified on a Calabi-Yau 3-fold. We give exact (non-perturbative) results for the string effective lagrangian. Our geometrical framework suggests a re-formulation of the Gepner conjecture about (2,2) superconformal theories as the solution to theSchottky problem for algebraic complex manifolds having trivial canonical bundle.


Neural Network Manifold Statistical Physic Complex System Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alvarez-Gaumé, L.: Supersymmetry and mathematics. In: Supersymmetry: A decade of development, West, P. C. (ed.) pp. 456–478. Bristol and Boston: Adam Hilger 1986Google Scholar
  2. 2.
    Witten, E.: Supersymmetry and morse theory. J. Diff. Geom.17, 661 (1982)Google Scholar
  3. 3.
    Atiyah, M. F., Singer, J. M.: Index of elliptic operators I. Ann. Math.87, 485 (1968); Atiyah, M. F. Singer, J. M.: Index of elliptic operators III. Ann. Math.87, 546 (1968); Atiyah, M. F., Singer, J. M.: Index of elliptic operators IV. Ann. Math.93, 119 (1971); Atiyah, M. F., Singer, J. M.: Index of elliptic operators V. Ann. Math.93, 139 (1971)Google Scholar
  4. 4.
    Alvarez-Gaumé, L.: Supersymmetry and the Atiyah-Singer index theorem. Commun. Math. Phys.90, 161–173 (1983); Alvarez-Gaumé, L.: A note on the Atiyah-Singer index theorem. J. Phys.A16, 4177–4182 (1983); Friedan, D., Windey, P.: Supersymmetric derivation of the Atiyah-Singer index and the chiral anomaly. Nucl. Phys.B235, 395 (1984); Getzler, E.: Commun. Math. Phys.92, 163 (1983)CrossRefGoogle Scholar
  5. 5.
    Witten, E.: Elliptic genera and quantum field theory. Commun. Math. Phys.109, 525–536 (1987); Schellekens, A. N., Warner, N. P.: Anomalies, characters and strings. Nucl. Phys.B287, 317–316 (1987); Alvarez, O., Killingback, T., Mangano, M., Windey, P.: String theory and loop space index theorems. Commun. Math. Phys.111, 1–10 (1987)CrossRefGoogle Scholar
  6. 6.
    Witten, E.: Constraints on supersymmetry breaking. Nucl. Phys.B202, 253 (1982)CrossRefGoogle Scholar
  7. 7.
    Griffiths, P.: Periods of integrals on algebraic manifolds. I, II. Am. J. Math.90, 568–626, 805–865 (1968)Google Scholar
  8. 8.
    Calabi, E.: On Kähler manifolds with vanishing canonical class. In: Algebraic geometry and topology. A Symposium in honor of Lefschets, S. pp. 78–89. Princeton, NJ: Princeton University Press 1975; Yau, S.-T.: On Calabi's conjecture and some new results in algebraic geometry. Proc. Nat. Aca.d Sci. USA74, 1798–1799 (1977); Yau, S.-T.: On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampere equation, I. Commun. Pure Appl. Math.31, 339–411 (1978)Google Scholar
  9. 9.
    Griffiths, P.: Variations of Hodge Structure. Curvature properties of the Hodge Bundles. Infinitesimal variation of Hodge structure. Asymptotic behaviour of a variation of Hodge Structure. In: Topics in Transcendental Algebraic Geometry. Griffiths, P. (ed.). (Proceeding of the IAS seminar 1981–82). Annals of Mathematical Studies vol106, Princeton, NJ: Princeton Press 1984. Chapters I, II, III and IV. pp. 3–28; 29–49; 51–61; 63–74; and references thereinGoogle Scholar
  10. 10.
    Bryant, R. L.: Griffiths, P. A.: Some observations on the infinitesimal period relations for regular threefolds with trivial canonical class. In: Arithmetic and Geometry, papers dedicated to I. R. Shafarevitch, Artin, M., Tate, J. (eds.) Boston Basel Stuttgrat: Birkhauser 1983. Vol.2, pp. 77–102Google Scholar
  11. 11.
    Candelas, P., Horowitz, G., Strominger, A., Witten, E.: Vacuum configurations for superstring. Nucl. Phys.B258, 341 (1985)CrossRefGoogle Scholar
  12. 12.
    Green, M. B.: Schwarz, J. H., Witten, E.: Superstring Theory. Vol.1,2. Cambridge Monographs on Mathematical Physics. Cambridge: Cambridge University Press 1987Google Scholar
  13. 13.
    Kuranishi, M.: On the locally complete families of complex analytic structures. Ann. Math.75, 536–577 (1962)Google Scholar
  14. 14a.
    Tian, G.: Smoothness of the Universal Deformation Space of Compact Calabi-Yau Manifolds and Its Peterson-Weil Matric. In: Mathematical Aspects of String Theory. (Proceeding of the San Diego Conference, 1986). Yau, S.-T. (ed.) World Scientific, Advanced Series in Mathematical Physics, Vol.1, pp. 629–646. Singapore: World Scientific 1987Google Scholar
  15. 14b.
    Todorov, A.: Talk at the conference on: Global methods in analysis. Trieste 1988 (unpublished)Google Scholar
  16. 15a.
    Todorov, A. N.: Applications of the Kähler-Einstein Calabi-Yau metrics to moduli ofK3 surface. Invent. Math.61, 251–265 (1980); Todorov, A. N.: How many Kähler metrics has aK3 surface. In: Arithmetic and geometry. Dedicated to I. R. Shafarevitch. Artin, M., Tate, J. (eds.). Boston Basel Stuttgart: Birkhauser 1983. Vol.2, 251–265; Kobayashi, R., Todorov, A. N.: Polarized period map for generalizedK3 surfaces and the moduli of Einstein metrics. Tohoku Math. J.39, 341 (1987); Siu, Y. T.: A simple proof of the surjectivity of the period map ofK3 surfaces. Manuscripta Math.35, 225–255 (1981); Looijenga, E.: A Torelli theorem for Kähler-EinsteinK3 surfaces. In: Geometry Symposium, Utrecht 1980. pp. 101–112. Lectures Notes in Mathematics Vol.894, Looijenga, E., Sierma, D., Takens, F. Berlin, Heidelberg New York: Springer 1981CrossRefGoogle Scholar
  17. 15b.
    Barth, W., Peters, C., Van de Ven, A.: Compact complex surfaces. A Series of Modern Surveys in Mathematics. Berlin, Heidelberg, New York: Springer 1984Google Scholar
  18. 16.
    Sieberg, S.: Observations on the moduli space of superconformal field theories. Nucl. Phys.B303, 286–304 (1988)CrossRefGoogle Scholar
  19. 17.
    de Roo, M.: Matter coupling inN=4 supergravity. Nucl. Phys.B255, 515–53 (1985); de Roo, M.: GaugedN=4 matter couplings. Phys. Lett.156B, 331–334 (1985); Bergshoeff, E.: Koh, I. G., Sezgin, E.: Coupling of Yang-Mills toN=4,d=4 supergravity. Phys. Lett.155B, 71–75 (1985); de Roo, M., Wagemans, P.: Gauged matter coupling inN=4 supergravity. Nucl. Phys.B262, 646–660 (1985)Google Scholar
  20. 18.
    Strominger, A.: Yukawa couplings in Superstring compactification. Phys. Rev. Lett.55, 2547–2250 (1985)CrossRefGoogle Scholar
  21. 19.
    Candelas, P.: Yukawa couplings between (2,1)-forms. In: Mathematical Aspects of String Theory. (Proceedings of the San Diego Conference, 1986). Yau, S.-T. (ed.). World Scientific, Advanced Series in Mathematical Physics, Vol.1, pp. 488–542. Singapore: World Scientific 1987Google Scholar
  22. 20.
    Zamolodchikov, A. B.: Irreversibility of the flux of the renormalization group in a 2D field theory. J.E.T.P. Lett.43, 730–732 (1986)Google Scholar
  23. 21.
    Gepner, D.: Exactly solvable string compactifications on manifolds ofSU(N) holonomy. Phys. Lett.199B, 380–388 (1987)Google Scholar
  24. 22.
    Martinec, E.: Algebraic Geometry and effective Lagrangians. Phys. Lett.217B, 431 (1989)Google Scholar
  25. 23.
    Vafa, C., Warner, N.: Catastrophes and the Classification of Conformal Theories. Phys. Lett.218B, 431 (1989). Greene, B. R., Vafa, C., Warner, N.: Calabi-Yau Manifolds and Renormalization Group Flows. Nucl. Phys.B324, 427 (1989)Google Scholar
  26. 24.
    Gaillard, M. K., Zumino, B.: Duality rotations for interacting fields. Nucl. Phys.B193, 221–244 (1981)CrossRefGoogle Scholar
  27. 25.
    Banks, T., Dixon, L., Friedan, D., Martinec, E.: Phenomenology and conformal field theory, or can string theory predict the weak mixing angle? Nucl. Phys.B299, 613–626 (1988)CrossRefGoogle Scholar
  28. 26.
    Kodaira, K.: On compact complex analytic surfaces. I. Ann. Math.71, 111–152 (1960)Google Scholar
  29. 27.
    Witten, E., Bagger, J.: Quantization of Newton's constant in certain supergravity theories. Phys. Lett.115, 202–206 (1982)CrossRefGoogle Scholar
  30. 28.
    Catanese, F. M. E.: Infinitestimal Torelli theorems and counterexamples to Torelli problems. In: Topics in Transcendental Algebraic Geometry. Griffiths, P. ed.. (Preceeding of the IAS seminar 1981–82). Annals of Mathematical Studies. vol.106, pp. 143–156. Princeton, NJ: Princeton Press 1984, Chap. VIIIGoogle Scholar
  31. 29.
    Griffiths, P., Schmid, W.: Locally homogeneous complex manifolds. Acta Math.123, 253–302 (1969)Google Scholar
  32. 30.
    Griffiths, P.: Curvature properties of the Hodge Bundles. In: Topics in Transcendental Algebraic Geometry. Griffiths, P. (ed.) (Proceeding of the IAS seminar 1981–82). Annals of Mathematical Studies, Vol.106, pp. 29–49. Princeton, NJ: Princeton Press 1984, Chap. IIGoogle Scholar
  33. 31.
    Kodaira, K., Spencer, D. C.: On deformations of complex analytic structures, I, II, III. Ann. Math.67, 328–466 (1958);71, 43–76 (1960); Kodaira, K., Nirenberg, L., Spencer, D. C.: On the existence of deformations of complex analytic structures. Ann. Math.68, 450–459 (1958); Kodaira, K.: Complex manifolds and deformations of complex structures. Grundlehren der mathematischen Wissenschaften, Vol.283. New York, Berlin, Heidelberg: Springer 1986Google Scholar
  34. 32.
    Grimm, R., Sohnius, M., Wess, J.: Nucl. Phys.B133, 275 (1978)CrossRefGoogle Scholar
  35. 33a.
    de Wit, B., Van Proeyen, A.: Potentials and symmetries of general gaugedN=2 Supergravity-Yang-Mills models. Nucl. Phys.B245, 89–117 (1984)CrossRefGoogle Scholar
  36. 33b.
    de Wit, B., Lauwers, P. D., Van Proeyen, A.: Nucl. Phys.B255, 569 (1985)CrossRefGoogle Scholar
  37. 33c.
    Cremmer, E., Kounnas, C., Van Proeyen, A., Derendinger, J.-P., Ferrara, S., de Wit, B., Girardello, L.: Vector multiplets coupled toN=2 Supergravity: Super-Higgs effect, flat potentials and geometrical structure. Nucl. Phys.B250, 385–426 (1985)CrossRefGoogle Scholar
  38. 34.
    Grisaru, M. T., Van de Ven, A. E. M., Zanon, D.: Four-loop β-function for theN=1 andN=2 supersymmetric non-linear sigma-model in two dimensions. Phys. Lett.B173, 423–428 (1986); Two-dimensional supersymmetric sigma models on Ricci flat Kähler manifolds are not finite. Phys. Lett.B177, (1986); Gross, D., Witten, E.: Superstring modifications of Einstein's equations. Nucl. Phys.B277, 1 (1986); Witten, L., Witten, E.: Large radius expansion of superstring compactification. Nucl. Phys.B281, 109 (1987)CrossRefGoogle Scholar
  39. 35.
    Dixon, L.: Proceeding of the 1987 Trieste Summer School in High Energy Physics; Distler, J., Greene, B.: Some exact results on the superpotential from Calabi-Yau compactifications. Nucl. Phys.B309, 295–316 (1988)CrossRefGoogle Scholar
  40. 36.
    Dine, M., Seiberg, N.: Phys. Rev. Lett.55, 366 (1985); Seiberg, N.: String theory from a macroscopic point of view. In: Superstrings'87 (proceedings of the 1987 Trieste Spring School). Alvarez-Gaumé, L., Green, M. B., Grisaru, M. T., Jengo, R., Sezgin, E. (eds.). Singapore: World Scientific 1987CrossRefGoogle Scholar
  41. 37.
    Dine, M., Seiberg, N., Wen, X. G., Witten, E.: Non-perturbative effects on the string world-sheet I, II. Nucl. Phys.B278, 769–789 (1986); Nucl. Phys. B289, 319–363 (1987)CrossRefGoogle Scholar
  42. 38.
    Gepner, D.: Princeton preprint pupt-1093 (April 1988)Google Scholar
  43. 39.
    Carlson, J., Griffiths, P.: Infinitesimal variation of Hodge structure and the global Torelli problem. In: Journées de geometric algebrique d'Angers. (Sijthoff and Nordhoff, 1980) pp. 51–76, and reference thereinGoogle Scholar
  44. 40.
    Cecotti, S., Ferrara, S., Girardello, L.: Geometry of type II supestrings and the moduli of superconformal field theories. J. Mod. Phys.A4, 2475–2529 (1989)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • S. Cecotti
    • 1
    • 2
  1. 1.International School for Advanced StudiesTrieste
  2. 2.I.N.F.N. sez. di TriesteTriesteItaly

Personalised recommendations