Skip to main content
Log in

A unified approach to string scattering amplitudes

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

  1. 1)

    Physics. In the calculation of g-loop string tachyon amplitudes withn scattering points the distinguished Polyakov measure dπ g,n on the moduli spaceM g,n of Riemann surfaces of genus g withn punctures arises. We give an interpretation of this measure as the modulus squared of a holomorphic section μ g,n (the Mumford form) of a certain holomorphic line bundle, i.e., we prove an analog of the Belavin-Knizhnik theorem dπ g,n =|μ g,n |2 in the amplitudic case. We give an expression for this measure through the determinants of the Laplace operators over ghosts and over multivalued fields with monodromy prescribed by momenta at the scattering points. We show also that the form μ g,n (n≧0) (n≧0) for the partition function andn-point amplitudes can be obtained from a unified over alln, universal Mumford form.

  2. 2)

    Mathematics. The following new concepts from the theory of complex algebraic curves are investigated: divisors with complex coefficients, complex powers of holomorphic line bundles, determinants of Laplace operators over multivalued functions, etc. The corresponding generalizations of the determinant line bundles, the Weil-Deligne pairings, the Quillen and the Arakelov-Deligne metrics are constructed. A suggested by string amplitude considerations analog of the Mumford theorem on holomorphic triviality of the bundle λ2⊗λ -131 over the moduli space is given. This analog asserts the existence of a canonical flat metric on a certain line bundle\(\lambda _2 \otimes \lambda _1^{ - 13} \otimes \left( {\mathop \otimes \limits_{v = 1}^{13} \left\langle {\mathcal{O}(D^v ),\mathcal{O}(D^v )} \right\rangle ^{ - 1} } \right)\) (see the main body of the text). There exist two differences: the latter bundle is not holomorphically trivial but has a canonical flat metric, and, being defined on the Teichmüller spaceT g, n , this bundle can be pulled down only on an infinite-sheeted covering of the moduli spaceM g,n . The universal isometries and the relative curvatures from the second part of the paper may be interesting, too.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beilinson, A.A., Manin, Yu.I.: The Mumford form and the Polyakov measure in string theory. Commun. Math. Phys.107, 359–376 (1986)

    Article  Google Scholar 

  2. Belavin, A.A., Knizhnik, V.G.: Algebraic geometry and the geometry of quantum strings. Phys. Lett.B168, 201–206 (1986)

    Article  Google Scholar 

  3. Deligne, P.: Le determinant de la cohomologie. Contemp. Math.67, 93–178 (1987)

    Google Scholar 

  4. Moret-Bailly, L.: Métriques permises. Séminaire sur les pinceaux arithmétiques: la conjecture de Mordell (Paris, 1983/84). Astérisque127, 29–87 (1985)

    Google Scholar 

  5. Baranov, M.A., Schwarz, A.S.: On the multiloop contribution to the string theory. Int. J. Mod. Phys. A2, 1773–1796 (1987)

    Article  Google Scholar 

  6. Friedan, D.: Notes on string theory and two-dimensional conformal field theory. Workshop on unified string theories (Santa Barbara, CA, 1985), pp. 162–213. Singapore: World Scientific 1986

    Google Scholar 

  7. Voronov, A.A.: A formula for the Mumford measure in superstring theory. Funk. Anal. Pril.22, 67–68 (1988) (in Russian) [Funct. Anal. Appl.22, 57–59 (1988) (English translation)]

    Google Scholar 

  8. Deligne, P.: Lectures. Princeton: IAS 1987/88

  9. Rosly, A.A., Schwarz, A.S., Voronov, A.A.: Geometry of superconformal manifolds. Commun. Math. Phys.113, 129–152 (1988). Superconformal geometry and string theory. Commun. Math. Phys.120, 437–450 (1989)

    Article  Google Scholar 

  10. Beilinson, A.A., Schechtman, V.V.: Determinant bundles and Virasoro algebras. Commun. Math. Phys.118, 651–701 (1988)

    Article  Google Scholar 

  11. Lang, S.: Introduction to algebraic and Abelian functions. Graduate texts in Math. Vol. 89. Berlin, Heidelberg, New York: Springer 1982

    Google Scholar 

  12. Griffiths, Ph., Harris, J.: Principles of algebraic geometry. New York: Wiley 1978

    Google Scholar 

  13. Faltings, G.: Calculus on arithmetic surface. Ann. Math.119, 387–424 (1984)

    Google Scholar 

  14. Bismut, J.-M., Gillet, M., Soulé, C.: Analytic torsion and holomorphic determinant bundles. I, II, III. Commun. Math. Phys.115, 49–78, 79–126, 301–351 (1988)

    Article  Google Scholar 

  15. Deligne, P.: Théorèmes de Lefschetz et critères de dégénérescence de suites spectrales. Publ. Math. IHES.35, 107–126 (1968)

    Google Scholar 

  16. Mumford, D.: Tata lectures on theta. I, II. Boston: Birkhäuser 1984

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by A. Jaffe

Address after July 1990: Department of Mathematics, University of California, Davis, CA 95616, USA

Rights and permissions

Reprints and permissions

About this article

Cite this article

Voronov, A.A. A unified approach to string scattering amplitudes. Commun.Math. Phys. 131, 179–218 (1990). https://doi.org/10.1007/BF02097684

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02097684

Keywords

Navigation