Advertisement

Communications in Mathematical Physics

, Volume 149, Issue 2, pp 361–376 | Cite as

The existence of non-topological solitons in the self-dual Chern-Simons theory

  • Joel Spruck
  • Yisong Yang
Article

Abstract

In the recently discovered (2+1)-dimensional relativistic Chern-Simons model, self-duality can be achieved when the Higgs potential density assumes a special form for which both the asymmetric and symmetric vacua are ground state solutions. This important feature may imply the coexistence of static topological and non-topological vortex-like solutions inR2 but the latter have been rather elusive to a rigorous construction. Our main purpose in this paper is to prove the existence of non-topological radially symmetricN-vortex solutions in the self-dual Chern-Simons model. By a shooting method, we obtain a continuous family of gauge-distinctN-vortex solutions. Moreover, we are also able to classify all possible bare (or 0-vortex) solutions.

Keywords

Neural Network Statistical Physic Soliton Complex System Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ambjorn, J., Olesen, P.: A magnetic condensate solution of the classical electroweak theory. Phys. Lett.B 218, 67–71 (1989)CrossRefGoogle Scholar
  2. 2.
    Ambjorn, J., Olesen, P.: On electroweak magnetism. Nucl. Phys.B 315, 606–614 (1989)CrossRefGoogle Scholar
  3. 3.
    Berestycki, H., Lions, P.L., Peletier, L.A.: An ODE approach to the existence of positive solutions for semilinear problems inR N. Indiana Univ. Math. J.30, 141–157 (1981)CrossRefGoogle Scholar
  4. 4.
    Berestycki, H., Nirenberg, L.: On the method of moving planes and the sliding method. PreprintGoogle Scholar
  5. 5.
    Bogomol'nyi, E.B.: The stability of classical solutions. Sov. J. Nucl. Phys.24, 449–454 (1976)Google Scholar
  6. 6.
    Caffarelli, L., Gidas, B., Spruck, J.: Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth. PreprintGoogle Scholar
  7. 7.
    Chen, W., Li, C.: Classification of solutions of some nonlinear elliptic equations. PreprintGoogle Scholar
  8. 8.
    Gidas, B., Ni, W.-M., Nirenberg, L.: Symmetry of positive solutions of nonlinear elliptic equations inR n. Mathematical Analysis and Applications, Part A. Adv. Math. Suppl. Studies7A, pp. 369–402. L. Nachbin (ed.), New York: Academic Press 1981Google Scholar
  9. 9.
    Gidas, B., Spruck, J.: Global and local behavior of positive solutions of nonlinear elliptic equations. Commun. Pure Appl. Math.34, 528–598 (1981)Google Scholar
  10. 10.
    Hong, J., Kim, Y., Pac, P. Y.: Multivortex solutions of the abelian Chern-Simons theory Phys. Rev. Lett.64, 2230–2233 (1990)CrossRefGoogle Scholar
  11. 11.
    Jackiw, R.: Solitons in Chern-Simons/anyon systems. Preprint (Massachusetts Institute of Technology, 1991)Google Scholar
  12. 12.
    Jackiw, R., Lee, K., Weinberg, E.J.: Self-dual Chern-Simons solitons. Phys. Rev.D 42, 3488–3499 (1990)CrossRefGoogle Scholar
  13. 13.
    Jackiw, R., Pi, S.-Y.: Self-dual Chern-Simons solitons. Preprint (Massachusetts Instuitute of Technology, 1991)Google Scholar
  14. 14.
    Jackiw, R., Pi, S.-Y., Weinberg, E.J.: Topological and non-topological solitons in relativistic and non-relativistic Chern-Simons theory. Preprint (Columbia University, 1990)Google Scholar
  15. 15.
    Jackiw, R., Weinberg, E.J.: Self-dual Chern-Simons vortices. Phys. Rev. Lett.64, 2234–2237 (1990)CrossRefGoogle Scholar
  16. 16.
    Jaffe, A., Taubes, C.H.: Vortices and Monopoles. Boston: Birkhäuser 1980Google Scholar
  17. 17.
    Lee, K.: Self-dual nonabelian Chern-Simons solitons. Phys. Rev. Lett.66, 553–555 (1991)CrossRefGoogle Scholar
  18. 18.
    Li, C.: Monotonicity and symmetry of solutions of fully nonlinear equations I, II.: bounded domains, unbounded domains. Commun. P.D.E. (to appear)Google Scholar
  19. 19.
    Liouville, J.: Sur l'équation aux différences partielles\(\frac{{d^2 \log \lambda }}{{dudv}} \pm \frac{\lambda }{{2a^2 }} = 0\). J. Math. Pures Appl.18, 71–72 (1853)Google Scholar
  20. 20.
    Olesen, P.: Soliton condensate in some self-dual Chern-Simons theories. Preprint (The Niels Bohr Institute, 1991)Google Scholar
  21. 21.
    Protter, M.H., Weinberger, H.F.: Maximum Principles in Differential Equations. New Jersey: Prentice-Hall 1967Google Scholar
  22. 22.
    Spruck, J., Yang, Y.: Topological solutions in the self-dual Chern-Simons theory. PreprintGoogle Scholar
  23. 23.
    Spruck, J., Yang, Y.: On multivortices in the electroweak theory. I: Existence of periodic solutions. Commun. Math. Phys.144, 1–16 (1992)CrossRefGoogle Scholar
  24. 24.
    Tyupkin, Yu., Fateev, V.A., Shvarts, A.S.: Particle-like solutions of the equations of gauge theories. Theor. Math. Phys.26, 270–273 (1976)CrossRefGoogle Scholar
  25. 25.
    Wang, R.: The existence of Chern-Simons vortices. Commun. Math. Phys.137, 587–597 (1991)CrossRefGoogle Scholar
  26. 26.
    Yang, Y.: A generalized self-dual Chern-Simons Higgs theory Lett. Math. Phys.23, 179–191 (1991)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Joel Spruck
    • 1
    • 2
  • Yisong Yang
    • 3
  1. 1.Department of MathematicsUniversity of MassachusettsAmherstUSA
  2. 2.I.H.E.S.Bures-Sur-YvetteFrance
  3. 3.Department of Mathematics and StatisticsUniversity of New MexicoAlbuquerqueUSA

Personalised recommendations