Advertisement

Communications in Mathematical Physics

, Volume 149, Issue 2, pp 263–278 | Cite as

Solving the KP hierarchy by gauge transformations

  • Ling-Lie Chau
  • J. C. Shaw
  • H. C. Yen
Article

Abstract

We show that it is convenient to use “gauge” transformations (sometimes called explicit Bäcklund transformations) to generate new solutions for the KP hierarchy. Two particular kinds of gauge transformation operators, constructed out of the initial wave functions, are of fundamental importance in this approach. Through such gauge transformations, a very simple formula for the tau-function is obtained, encompassing and unifying all kinds of existing solutions. The corresponding free fermion representation and Baker functions for the new τ function can also be constructed.

Keywords

Neural Network Statistical Physic Wave Function Complex System Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sato, M.: RIMS Kokyuroku439, 30 (1981)Google Scholar
  2. 2.
    Date, E., Kashiwara, M., Jimbo, M., Miwa, T.: Nonlinear, Integrable Systems-Classical Theory and Quantum Theory. Jimbo, M., Miwa, T. (eds.) p. 39, Singapore: World Scientific 1983Google Scholar
  3. 3.
    Ohta, Y., Satzuma, J., Takahashi, D., Tokihiro, T.: Progr. Theor. Phys. [Suppl.]94, 210 (1988)Google Scholar
  4. 4.
    Mulase, M.: Adv. Math.54, 57 (1984)CrossRefGoogle Scholar
  5. 5.
    Shiota, T.: Invent. Math.83, 333 (1986)CrossRefGoogle Scholar
  6. 6.
    Zakharov, V. E., Shabat, A.B.: Funct. Anal. Appl.8, 226 (1974)CrossRefGoogle Scholar
  7. 7.
    Baker, H.F.: Note on the foregoing paper: Commutative ordinary differential operators. Burchnall, J.L., Chaundy, T.W. (eds.) Proc. R. Soc. London (A)118, 584–593 (1928); Segal, G., Wilson, G.: Publ. Math. IHES61, 5 (1985)Google Scholar
  8. 8.
    Zakharov, V.E., Mikhailov, A.V.: Sov. Phys. JETP47, 1017 (1978)Google Scholar
  9. 9.
    Novikov, S., Manakov, S.V., Pitaevskii, L.P., Zakharov, V.E.: Theory of Solitons, New York: Consultants Bureau 1984Google Scholar
  10. 10.
    Chau, L.-L., Shaw, J.C., Yen, H.C.: J. Math. Phys.32, 1737 (1991)CrossRefGoogle Scholar
  11. 11.
    Adler, M., Moser, J.: Commun. Math. Phys.61, 1 (1978)CrossRefGoogle Scholar
  12. 12.
    Satsuma, J.: Phys. Soc. Jpn Lett.46, 359 (1979)CrossRefGoogle Scholar
  13. 13.
    Freeman, N.C., Nimmo, J.J.C.: Phys. Lett.95A 1 (1983)CrossRefGoogle Scholar
  14. 14.
    Hirota, R., Ohta, Y., Satsuma, J.: Progr. Theor. Phys. [Suppl.]94, 59 (1988)Google Scholar
  15. 15.
    Nakamura, A.: J. Phys. Soc. Jpn.58, 412 (1989)CrossRefGoogle Scholar
  16. 16.
    Miyake, S., Ohta, Y., Satsuma, J.: J. Phys. Soc. Jpn59, 48, (1990)CrossRefGoogle Scholar
  17. 17.
    See, for example, Bäcklund Transformations. Lecture Notes in Math. vol.515, Miura, R. M. (ed.) Berlin, Heidelberg, New York: Springer 1976Google Scholar
  18. 18.
    See, for example, Rogers, C., Shadwick, W.F.: Bäcklund transformations and their applications. New York: Academic Press 1982Google Scholar
  19. 19.
    Pöppe, C.: Inverse Problems5, 613 (1989)CrossRefGoogle Scholar
  20. 20.
    Johnson, R.S., Thompson, S.: Phys. Lett.66A, 279 (1978)CrossRefGoogle Scholar
  21. 21.
    Nakamura, A.: J. Phys. Soc. Jpn.51, 19 (1982)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Ling-Lie Chau
    • 1
    • 2
  • J. C. Shaw
    • 3
  • H. C. Yen
    • 4
  1. 1.Department of PhysicsUniversity of CaliforniaDavis
  2. 2.Los Alamos National LaboratoryLos AlamosUSA
  3. 3.Department of Applied MathematicsNational Chiao Tung UniversityHsinchuTaiwan, R.O.C.
  4. 4.Department of PhysicsNational Tsing Hua UniversityHsinchuTaiwan, R.O.C.

Personalised recommendations