Skip to main content
Log in

Estimates and extremals for zeta function determinants on four-manifolds

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

LetA be a positive integral power of a natural, conformally covariant differential operator on tensor-spinors in a Riemannian manifold. Suppose thatA is formally self-adjoint and has positive definite leading symbol. For example,A could be the conformal Laplacian (Yamabe operator)L, or the square of the Dirac operator

. Within the conformal class\(\left\{ {g = e^{2w} g_0 |w \in C^\infty (M)} \right\}\) of an Einstein, locally symmetric “background” metricg o on a compact four-manifoldM, we use an exponential Sobolev inequality of Adams to show that bounds on the functional determinant ofA and the volume ofg imply bounds on theW 2,2 norm of the conformal factorw, provided that a certain conformally invariant geometric constantk=k(M, g o A) is strictly less than 32π2. We show for the operatorsL and

that indeedk < 32π2 except when (M, g o ) is the standard sphere or a hyperbolic space form. On the sphere, a centering argument allows us to obtain a bound of the same type, despite the fact thatk is exactly equal to 32π2 in this case. Finally, we use an inequality of Beckner to show that in the conformal class of the standard four-sphere, the determinant ofL or of

is extremized exactly at the standard metric and its images under the conformal transformation groupO(5,1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • [Ad] Adams, D.R.: A sharp inequality of J. Moser for higher order derivatives. Ann. Math.128, 385–398 (1988)

    Google Scholar 

  • [Au1] Aubin, T.: Fonction de Green et valeurs propres du Laplacien. J. Math. Pures Appl.53, 347–371 (1974)

    Google Scholar 

  • [Au2] Aubin, T.: Meilleures constantes dans le théorèm, d'inclusion de Sobolev et un théorèm de Fredholm non linéaire pour la transformation conforme de la courbure scalaire. J. Funct. Anal.32, 148–174 (1979)

    Article  Google Scholar 

  • [Bec1] Beckner, W.: Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality. Preprint, to appear in the Annals of Math.

  • [Bec2] Beckner, W.: private communication

  • [Bes] Besse, A.: Einstein Manifolds. Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, Band 10, Berlin, Heidelberg, New York: Springer 1987

    Google Scholar 

  • [BØ1] Branson, T., Ørsted, B.: Conformal indices of Riemannian manifolds. Comp. Math.60, 261–293 (1986)

    Google Scholar 

  • [BØ2] Branson, T., Ørsted, B.: Conformal deformation and the heat operator. Indiana U. Math. J.37, 83–110 (1988)

    Article  Google Scholar 

  • [BØ3] Branson, T., Ørsted, B.: Explicit functional determinants in four dimensions. Proc. Am. Math. Soc.113, 669–682 (1991)

    Google Scholar 

  • [CY] Chang, S.-Y.A., Yang, P.: Compactness of isospectral conformal metrics on S3. Comment. Math. Helv.64, 363–374 (1989)

    Google Scholar 

  • [F] Fontana, L.: Sharp borderline estimates on spheres and compact Riemannian manifolds. Ph.D. dissertation, Washington University, 1991

  • [G] Gilkey, P.: Invariance Theory, the Heat Equation, and the Atiyah-Singer Index Theorem. Wilmington, DE: Publish or Perish 1984

    Google Scholar 

  • [J] Jensen, G.: Homogeneous Einstein spaces of dimension four. J. Diff Geom.3, 309–349 (1969)

    Google Scholar 

  • [MS] McKean, H., Singer, I.: Curvature and the eigenvalues of the Laplacian. J. Diff. Geom.1, 43–69 (1967)

    Google Scholar 

  • [O'N] O'Neil, R.: Convolution operators andL(p,q) spaces. Duke Math. J.30, 129–142 (1963)

    Article  Google Scholar 

  • [On] Onofri, E.: On the positivity of the effective action in a theory of random surfaces. Commun. Math. Phys.86, 321–326 (1982)

    Article  Google Scholar 

  • [OV] Onofri, E., Virasoro, M.: On a formulation of Polyakov's string theory with regular classical solutions. Nucl. Phys. B201, 159–175 (1982)

    Article  Google Scholar 

  • [OPS1] Osgood, B., Phillips, R., Sarnak, P.: Extremals of determinants of Laplacians. J. Funct. Anal.80, 148–211 (1988)

    Article  Google Scholar 

  • [OPS2] Osgood, B., Phillips, R., Sarnak, P.: Compact isospectral sets of surfaces. J. Funct. Anal.80, 212–234 (1988)

    Article  Google Scholar 

  • [P1] Polyakov, A.: Quantum geometry of Bosonic strings. Phys. Lett. B.103, 207–210 (1981)

    Article  Google Scholar 

  • [P2] Polyakov, A.: Quantum geometry of Fermionic strings. Phys. Lett. B103, 211–213 (1981)

    Article  Google Scholar 

  • [RS] Ray, D., Singer, I.:R-torsion and the Laplacian on Riemannian manifolds. Adv. Math.7, 145–210 (1971)

    Article  Google Scholar 

  • [S] Seeley, R.: Complex powers of an elliptic operator. Proc. Symposia Pure Math.10, 288–307 (1967)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by A. Jaffe

Sonderforschungsbereich 170: “Geometrie und Analysis”, Bunsenstrasse 3-5, W-3400, Göttingen, FRG, and Matermatisk Institut, Odense Universitet, DK-5230, Odense M, Denmark.

The first-named author acknowledges support from the University of Iowa Center for Advanced Studies, Odense Universitet, and Sonderforschungsbereich 170: “Geometrie und Analysis” in Göttingen. Research of the second-and third-named authors was partially supported by the NSF

Rights and permissions

Reprints and permissions

About this article

Cite this article

Branson, T.P., Chang, SY.A. & Yang, P.C. Estimates and extremals for zeta function determinants on four-manifolds. Commun.Math. Phys. 149, 241–262 (1992). https://doi.org/10.1007/BF02097624

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02097624

Keywords

Navigation