Communications in Mathematical Physics

, Volume 149, Issue 2, pp 217–240 | Cite as

On geometric phases for soliton equations

  • M. S. Alber
  • J. E. Marsden


This paper develops a new complex Hamiltonian structure forn-soliton solutions for a class of integrable equations such as the nonlinear Schrödinger, sine-Gordon and Korteweg-de Vries hierarchies of equations that yields, amongst other things, geometric phases in the sense of Hannay and Berry. For example, one of the possible soliton geometric phases is manifested by the well known phase shift that occurs for interacting solitons. The main new tools are complex angle representations that linearize the corresponding Hamiltonian flows on associated noncompact Jacobi varieties. This new structure is obtained by taking appropriate limits of the differential equations describing the class of quasi-periodic solutions. A method of asymptotic reduction of the angle representations is introduced for investigating soliton geometric phases that are related to the presence of monodromy at singularities in the space of parameters. In particular, the phase shift of interacting solitons can be expressed as an integral over a cycle on an associated Riemann surface. In this setting, soliton geometric asymptotics are constructed for studying geometric phases in the quantum case. The general approach is worked out in detail for the three specific hierarchies of equations mentioned. Some links with τ-functions, the braid group and geometric quantization are pointed out as well.


Soliton Phase Shift Riemann Surface Quantum Computing Braid Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ablowitz, M.J., Segur, H.: Asymptotic solutions of the Korteweg-de Vries equation. Stud. Appl. Math.57, 13–44 (1977)Google Scholar
  2. 2.
    Ablowitz, M.J., Segur, H.: Solitons and the Inverse Scattering Transform. Philadelphia: SIAM 1981Google Scholar
  3. 3.
    A'Campo, N.: Tresses, monodromie et le group symplectique. Comment. Math. Helvetici54, 318–327 (1979)Google Scholar
  4. 4.
    Adler, M., Van Moerbeke, P.: Completely integrable systems, Kac-Moody Lie algebras and curves. Adv. Math.38(3), 267–317 (1980)CrossRefGoogle Scholar
  5. 5.
    Alber, M.S.: On integrable systems and semiclassical solutions of the stationary Schrödinger equations. Inverse Problems5, 131–148 (1989)CrossRefGoogle Scholar
  6. 6.
    Alber, M.S.: Complex geometric asymptotics, geometric phases and nonlinear integrable systems. Studies in Math. Phys. vol.3, pp. 415–427. Amsterdam: North-Holland, Elsevier 1992Google Scholar
  7. 7.
    Alber, M.S.: Hyperbolic geometric asymptotics. Asymptotic Analysis5, 161–172 (1991)Google Scholar
  8. 8.
    Alber, M.S., Marsden, J.E.: Geometric phases and monodromy at singularities. (to appear)Google Scholar
  9. 9.
    Alber, M.S., Alber, S.J.: Hamiltonian formalism for finite-zone solutions of integrable equations. C. R. Acad. Sci. Paris301, 777–781 (1985)Google Scholar
  10. 10.
    Arnold, V.I.: Dynamical Systems. Berlin, Heidelberg, New York: Springer 1988Google Scholar
  11. 11.
    Arnold, V.I.: A remark on the branching of hyperelliptic integrals as functions of the parameters. Func. Anal. Appl.2, 187–189 (1968)CrossRefGoogle Scholar
  12. 12.
    Berry, M.V.: Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A392, 45 (1984)Google Scholar
  13. 13.
    Berry, M.V.: Classical adiabatic angles and quantal adiabatic phase. J. Phys. A: Math. Gen.18, 15 (1985)CrossRefGoogle Scholar
  14. 14.
    Berry, M.V., Hannay, J.H.: Classical non-adiabatic angles. J. Phys. A: Math. Gen.21, L325 (1988)CrossRefGoogle Scholar
  15. 15.
    Berry, M.V.: Quantum adiabatic anholonomy. Lectures given at the Ferrara School of Theoretical Physics on “Anomalies, defects, phases...”, June 1989, (to be published by Bibliopolis (Naples))Google Scholar
  16. 16.
    Bishop, A.R., McLaughlin, D.W., Solerno, M.: Global coordinates for the breather-kink (antikink) sine-Gordon phase space: An explicit separatrix as a possible source of chaos. Phys. Rev. A40, 11, 6463–6469 (1989)CrossRefPubMedGoogle Scholar
  17. 17.
    Calogero, F., Degasperis, A.: Spectral transform and solitons. Amsterdam: North-Holland 1982Google Scholar
  18. 18.
    Deift, P., Li, L.C., Tomei, C.: Matrix factorizations and integrable systems. Comm. Pure Appl. Math. 443–521 (1989)Google Scholar
  19. 19.
    Devaney, R.: Transversal homoclinic orbits in an integrable system. Am. J. Math.100, 631–642 (1978)Google Scholar
  20. 20.
    Duistermaat, H.J.: On global Action-Angle Coordinates. Comm. Pure Appl. Math.23, 687 (1980)Google Scholar
  21. 21.
    Ercolani, N., McKean, H.P.: Geometry of KdV(4): Abel sums, Jacobi variety, and theta function in the scattering case. Invent. Math.99, 483–544 (1990)CrossRefGoogle Scholar
  22. 22.
    Ercolani, N., Forest, M., McLaughlin, D.W., Montgomery, R.: Hamiltonian Structure for the Modulation Equations of a sine-Gordon Wavetrain. Duke Math. J.55, (4) 949–983 (1987)CrossRefGoogle Scholar
  23. 23.
    Ercolani, N., Forest, M., McLaughlin, D.W.: Notes on Melnikov integrals for models of the periodic driven pendulum chain. Preprint (1989)Google Scholar
  24. 24.
    Ercolani, N., Forest, M.: The Geometry of Real sine-Gordon Wavetrains. Commun. Math. Phys.99, 1–49 (1985)CrossRefGoogle Scholar
  25. 25.
    Ercolani, N., McLaughlin, D.W.: Toward a Topological Classification of Integrable PDE's. In: Ratiu, T. (ed.), Proc. of a Workshop on The Geometry of Hamiltonian System, MSRI Publications vol22, Berlin, Heidelberg, New York: Springer, 1991, pp. 111–130Google Scholar
  26. 26.
    Flaschka, H., McLaughlin, D.W.: Canonically Conjugate Variables for the Korteweg-de Vries Equation and the Toda Lattice with Periodic Boundary Conditions. Prog. Theor. Phys.55(2), 438–456 (1976)Google Scholar
  27. 27.
    Flaschka, H., McLaughlin, D.W., Forest, M.G.: Multiphase Averaging and the Inverse Spectral Solution of the Korteweg-de Vries Equation. Comm. Pure Appl. Math.33, 739 (1980)Google Scholar
  28. 28.
    Flaschka, H., Newell, A.C., Ratiu, T.: Kac-Moody Lie Algebras and Soliton Equations II, III. Physica9D, 300–332 (1983)Google Scholar
  29. 29.
    Forest, M.G., McLaughlin, D.W.: Spectral theory for the periodic sine-Gordon equation: A concrete viewpoint. J. Math. Phys.23(7), 1248–1277 (1982)CrossRefGoogle Scholar
  30. 30.
    Forest, M.G., McLaughlin, D.W.: Modulation of Sinh-Gordon and Sine-Gordon Wavetrains. Studies Appl. Math.68, 11–59 (1983)Google Scholar
  31. 31.
    Francoise, J.-P.: Arnold's Formula for Algebraically Completely Integrable Systems. Bull. AMS (New Series)17, 2, 301–303 (1987)Google Scholar
  32. 32.
    Guillemin, V., Sternberg, S.: Geometric Asymptotics. Math. Surveys14, Providence, Rhode Island: AMS 1977Google Scholar
  33. 33.
    Guillemin, V., Sternberg, S.: The Gelfand-Cetlin system and the quantization of the complex Flag Manifolds. J. Funct. Anal.52(1), 106–128 (1983)CrossRefGoogle Scholar
  34. 34.
    Hasegawa, A., Kodama, Y.: Guiding-center soliton in optical fibers. Optical Letters15, 24, 1443–1445 (1990)Google Scholar
  35. 35.
    Knörrer, H.: Singular fibres of the momentum mapping for integrable Hamiltonian systems. J. Reine. Ang. Math.355, 67–107 (1984)Google Scholar
  36. 36.
    Lax, P.D., Levermore, C.D.: The small Dispersion Limit of the Korteweg-de Vries Equation, I, II, III. Comm. Pure Appl. Math.36(2), 253–290, 571–593, 809–830 (1983)Google Scholar
  37. 37.
    Marsden, J.E., Montgomery, R., Ratiu, T.: Cartan-Hannay-Berry Phases and Symmetry. Contemp. Math.97, 279 (1989); see also Mem. AMS Vol. 436 (1990)Google Scholar
  38. 38.
    McKean, H.P.: Integrable Systems and Algebraic Curves. Lecture Notes in Mathematics Berlin, Heidelberg, New York: Springer 1979Google Scholar
  39. 39.
    McKean, H.P.: Theta functions, solitons, and singular curves. In: Byrnes, C.I. (ed.), PDE and Geometry, Proc. of Park City Conference 237–254 (1977)Google Scholar
  40. 40.
    McKean, H.P., Trubowitz, E.: Hill's operator and hyperelliptic function theory in the presence of infinitely many branch points. Comm. Pure Appl. Math.29, 143–226 (1976)Google Scholar
  41. 41.
    Montgomery, R.: The Connection whose Holonomy is the classical Adiabatic Angles of Hannay and Berry and Its Generalization to the Non-Integrable case. Commun. Math. Phys.120, 269–294 (1988)CrossRefGoogle Scholar
  42. 42.
    Moser, J.: Integrable Hamiltonian Systems and Spectral Theory, Academia Nazionale dei Lincei, Fermi Lecture, Pisa, 1981Google Scholar
  43. 43.
    Mumford, D.: Tata Lectures on Theta I and II, Progress in Math. vol.28 and vol.43, Boston: Birkhauser 1983Google Scholar
  44. 44.
    Previato, E.: Hyperelliptic quasi-periodic and soliton solutions of the nonlinear Schrödinger equation. Duke Math. J.52, 2 (1985)CrossRefGoogle Scholar
  45. 45.
    Ruijsenaars, S.N.M.: Action-Angle Maps and Scattering Theory for some Finite-Dimensional Integrable Systems I. The Pure Soliton Case. Commun. Math. Phys.115, 127–165 (1988)CrossRefGoogle Scholar
  46. 46.
    Tracy, E.R.: Topics in nonlinear wave theory with applications. Ph.D. Thesis, University of Maryland, College Park 1984Google Scholar
  47. 47.
    Venakides, S.: The Generation of Modulated Wavetrains in the Solution of the Korteweg-de Vries Equation. Comm. Pure and Appl. Math.38, 883–909 (1985)Google Scholar
  48. 48.
    Venakides, S., Zhang, T.: Periodic Limit of Inverse Scattering. Preprint, Duke University, 1991Google Scholar
  49. 49.
    Weinstein, A.: Connections of Berry and Hannay type for moving Lagrangian submanifolds. Adv. Math.82, 2, 133–159 (1990)CrossRefGoogle Scholar
  50. 50.
    Witten, E.: Quantum Field Theory and the Jones Polynomials. Commun. Math. Phys.121, 351–399 (1989)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • M. S. Alber
    • 1
  • J. E. Marsden
    • 2
  1. 1.Department of MathematicsUniversity of Notre DameNotre DameUSA
  2. 2.Department of MathematicsUniversity of CaliforniaBerkeleyUSA

Personalised recommendations