Skip to main content
Log in

Darboux coordinates and Liouville-Arnold integration in loop algebras

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Darboux coordinates are constructed on rational coadjoint orbits of the positive frequency part\(\tilde{\mathfrak{g}}^+\) of loop algebras. These are given by the values of the spectral parameters at the divisors corresponding to eigenvector line bundles over the associated spectral curves, defined within a given matrix representation. A Liouville generating function is obtained in completely separated form and shown, through the Liouvile-Arnold integration method, to lead to the Abel map linearization of all Hamiltonian flows induced by the spectral invariants. As illustrative examples, the caseg =sl(2), together with its real forms, is shown to reproduce the classical integration methods for finite dimensional systems defined on quadrics, with the Liouville generating function expressed in hyperellipsoidal coordinates. Forg =sl(3), the method is applied to the computation of quasi-periodic solutions of the two component coupled nonlinear Schrödinger equation, a case which requires further symplectic constraints in order to deal with singularities in the spectral data at ∞.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • [A] Adler, M.: On a trace functional for formal pseudo-differential operators and the symplectic structure of the Korteweg-de Vries equation. Invent. math.50, 219–248 (1979)

    Google Scholar 

  • [AHH1] Adams, M.R., Harnad, J., Hurtubise, J.: Isospectral Hamiltonian flows in finite and infinite dimension. II. Integration of flows. Commun. Math. Phys.134, 555–585 (1990)

    Google Scholar 

  • [AHH2] Adams, M.R., Harnad, J., Hurtubise, J.: Dual moment maps to loop algebras. Lett. Math. Phys.20, 294–308 (1990)

    Google Scholar 

  • [AHH3] Adams, M.R., Harnad, J., Hurtubise, J.: Integrable Hamiltonian systems on rational coadjoint orbits of loop algebras. In: Hamiltonian systems, transformation groups and spectral transform methods. Harnad, J., Marsden, J. (eds.). Montréal: Publ. C.R.M. 1990

    Google Scholar 

  • [AHH4] Adams, M.R., Harnad, J., Hurtubise, J.: Liouville generating function for isospectral Hamiltonian flow in loop algebras. In: Integrable and superintegrable systems. Kuperschmidt, B. (ed.) Singapore: World Scientific 1990

    Google Scholar 

  • [AHH5] Adams, M.R., Harnad, J., Hurtubise, J.: Coadjoint orbits, spectral curves and Darboux coordinates. In: The geometry of Hamiltonian systems. Ratiu, T. (ed.). New York: Publ. MSRI, Springer 1991

    Google Scholar 

  • [AHH6] Adams, M.R., Harnad, J., Hurtubise, J.: Coadjoint orbits and algebraic geometry (in preparation)

  • [AHP] Adams, M.R., Harnad, J., Previato, E.: Isospectral Hamiltonian flows in finite and infinite dimensions. I. Generalised Moser systems and moment maps into loops algebras. Commun. Math. Phys.117, 451–500 (1988)

    Google Scholar 

  • [AvM] Adler, M., Van Moerbeke, P.: Completely integrable systems, Euclidean Lie algebras, and curves. Adv. Math.38, 267–317 (1980); Linearization of Hamiltonian systems, Jacobi Varieties and Representation Theory. Adv. Math.38, 318–379 (1980)

    Google Scholar 

  • [C] Clebsch, A.: Leçons sur la géométrie, Vol. 3, Paris: Gauthier-Villars 1883

    Google Scholar 

  • [D] Dickey, L.A.: Integrable nonlinear equations and Liouville's theorem. I, II. Commun. Math. Phys.82, 345–360 (1981); Commun. Math. Phys.82, 360–375 (1981)

    Google Scholar 

  • [Du] Dubrovin, B.A.: Theta functions and nonlinear equations. Russ. Math. Surv.36, 11–92 (1981)

    Google Scholar 

  • [F] Flaschka, H.: Toward an algebro-geometrical interpretation of the Neumann system. Tohoku Math. J.37, 407–426 (1984)

    Google Scholar 

  • [FRS] Frenkel, I.B., Reiman, A.G., Semenov-Tian-Shansky, M.A.: Graded Lie algebras and completely integrable Hamiltonian systems. Sov. Math. Doklady20, 811–814 (1979)

    Google Scholar 

  • [GHHW] Gagnon, L., Harnad, J., Hurtubise, J., Winternitz, P.: Abelian integrals and the reduction method for an integrable Hamiltonian system. J. Math. Phys.26, 1605–1612 (1985)

    Google Scholar 

  • [GD] Gel'fand, I.M., Dik'ii, L.A.: Integrable nonlinear equations and the Liouville theorem. Funct. Anal. Appl.13, 8–20 (1979)

    Google Scholar 

  • [GH] Griffiths, P., Harris, J.: Principles of algebraic geometry. New York: Wiley 1978

    Google Scholar 

  • [H] Harnad, J.: Uses of infinite dimensional moment maps. In: Proceedings of XVIIth International colloquium on Group Theoretical Methods in Physics. Saint-Aubin, Y., Vinet, L. (eds.), Singapore: World Scientific 1989, pp. 68–89

    Google Scholar 

  • [Kn] Knörrer, H.: Geodesics on quadrics and a mechanical problem of C. Neumann. J. Reine Angew. Math.334, 69–78 (1982)

    Google Scholar 

  • [K] Krichever, I.M.: Methods of algebraic geometry in the theory of nonlinear equations. Russ. Math. Surv.32, 185–213 (1977)

    Google Scholar 

  • [KN] Krichever, I.M., Novikov, S.P.: Holomorphic bundles over algebraic curves and nonlinear equations. Russ. Math. Surv.32, 53–79 (1980)

    Google Scholar 

  • [Ko] Kostant, B.: The solution to a generalized Toda lattice and representation theory. Adv. Math.34, 195–338 (1979)

    Google Scholar 

  • [vMM] van Moerbeke, P., Mumford, D.: The spectrum of difference operators and algebraic curves. Acta Math.134, 93–154 (1979)

    Google Scholar 

  • [M] Moser, J.: Geometry of quadrics and spectral theory. The Chern Symposium, Berkeley, June 1979, 147–188, New York: Springer 1980

    Google Scholar 

  • [N] Neumann, C.: De problemate quodam mechanico, quod ad primam integralium ultraellipticorum classem revocatur. J. Reine Angew. Math.56, 46–63 (1859)

    Google Scholar 

  • [Ra] Ratiu, T.: The C. Neumann problem as a completely integrable system on an adjoint orbit. Trans. A.M.S.439, 321–329 (1981)

    Google Scholar 

  • [RS] Reiman, A.G., Semenov-Tian-Shansky, M.A.: Reduction of Hamiltonian systems, affine Lie algebras and lax equations. I, II. Invent. Math.54, 81–100 (1979); Invent. Math.63, 423–432 (1981)

    Google Scholar 

  • [S] Symes, W.: Systems of Toda type, inverse spectral problems and representation theroy. Invent. Math.59, 13–51 (1980)

    Google Scholar 

  • [Sch] Schilling, R.: Generalizations of the Neumann system—a curve theoretic approach. Commun. Pure Appl. Math.40, 455–522 (1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by A. Jaffe

Research supported in part by the Natural Sciences and Engineering Research Council of Canada and by U.S. Army Grant DAA L03-87-K-0110

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adams, M.R., Harnad, J. & Hurtubise, J. Darboux coordinates and Liouville-Arnold integration in loop algebras. Commun.Math. Phys. 155, 385–413 (1993). https://doi.org/10.1007/BF02097398

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02097398

Keywords

Navigation