Skip to main content
Log in

Analgesic activity of new pyrazine CH and NH acids and their Hydrophobic and electron donating properties

  • Original Articles
  • Published:
Pharmaceutisch Weekblad Aims and scope Submit manuscript

Abstract

Analgesic efficacy was determined by the hot plate method for a group of 17 new pyrazine and 3 non-pyrazine CH and NH acids. The biological data were quantitatively related to the hydrophobicity of the compounds, expressed by fragmental constant, and to the orbital energy of the highest occupied molecular orbital, calculated quantumchemically. It has been found that the higher the electron donating properties, the more active is the agent, provided that its hydrophobicity allows it to reach its site of action. The results obtained support the charge transfer model for the biological interaction of analgesic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Moncada S, Vane JR. Pharmacology and endogenous roles of prostaglandisendoperoxides, tromboxane A2, and prostacyclin. Pharmacol Rev 1978;30:293–331.

    PubMed  Google Scholar 

  2. Shen TY. Toward more selective antiarthritic therapy. J Med Chem 1981;24:1–5.

    Article  PubMed  Google Scholar 

  3. Brendel W. Ein neues statistisches Verfahren zur Suche nach essentiellen pharmakophoren Strukturen. Pharmazie 1983;38:116–9.

    PubMed  Google Scholar 

  4. Brune K, Glatt M, Graf P. Mechanisms of action of antiinflammatory drugs. Gen Pharmacol 1976;7:27–33.

    PubMed  Google Scholar 

  5. Neely WB, White HC, Rudzik A. Structure-activity relations in an imidazoline series prepared for their analgesic properties. J Pharm Sci 1968;57:1176–9.

    PubMed  Google Scholar 

  6. KuchaŘ M, Rejholec V, Brunova B, Roubal Z, Nemecek O. Structure-activity relationships in a series of cinnamic acids in the stabilizing action on erythrocyte membrane. In: Tichy M, ed. Quantitative Structure-Activity Relationships. Budapest: Akademiai Kiado, 1976:45–7.

    Google Scholar 

  7. KuchaŘ M. The use of QSAR in the synthesis of antiinflammatory arylaliphatic acids. In: Knoll J, Darvas F, eds. Chemical Structure-Biological Activity Relationships. Quantitative Approaches. Budapest: Akademiai Kiado, 1980:15–24.

    Google Scholar 

  8. Miyashita Y, Seki T, Yotsui K-i, Yamazaki M, Sano M, Abe H, Sasaki S-i. Quantitative structure-activity relations in pyrazolylpyrimidine derivatives for their analgesic activities. Bull Chem Soc Jpn 1982;55:1489–92.

    Google Scholar 

  9. Mehler EL, Habicht J, Brune K. Quantum chemical analysis of structure-activity relationships in nonsteroidal antiinflammatory drugs. Mol Pharmacol 1982;22:525–8.

    PubMed  Google Scholar 

  10. Mehler EL, Habicht J, Brune K. Structure-activity relationships in antiinflammatory phenols, benzoates and salicylates as obtained by quantum chemical methods. Agents Actions 1983;13:516–7.

    Google Scholar 

  11. Pilarski B, Foks H. Polish Patents P-232 409 and P-234 716.1981.

  12. Pilarski B, Foks H, OŚmiałowski K, Kaliszan R. Studies on pyrazinyl-pyrazylidene tautomerism of pyrazineacetonitrile derivatives. Monatsh Chem 1984;115:179–85.

    Article  Google Scholar 

  13. Junek H, Wolny B. über einige Kondensationsreaktion von dimeren Malonitril, dimerem Cyanessigsäureäthyl bzw. methylester mit aromatischen Aldehyden. Monatsh Chem 1976;107:999–1006.

    Article  Google Scholar 

  14. Winter CA, Risley EA, Nuss GW. Carrageenan induced edema in hind paw of the rat as an assay for antiinflammatory drugs. Proc Soc Exp Biol Med 1962;111:544–7.

    PubMed  Google Scholar 

  15. Cochin J. Methods for the appraisal of analgetic drugs for addiction liability. In: Burger A, ed. Selected Pharmacological Testing Methods. New York: Marcel Dekker Inc., 1968:121–7.

    Google Scholar 

  16. Rekker RF. The hydrophobic fragmental constant. Its derivation and application. A means of characterizing membrane systems. Amsterdam: Elsevier Science Publishers 1977:1–389.

    Google Scholar 

  17. Hansch C, Leo A. Substituent constants for correlation analysis in chemistry and biology. New York: John Wiley & Sons, 1979:18–43.

    Google Scholar 

  18. Kaliszan R. Chromatography in studies of quantitative structure-activity relationships. J Chromatogr 1981;220:71–83.

    Article  PubMed  Google Scholar 

  19. Wheatley PI. The crystal and molecular structure of pyrazine. Acta Cryst 1957;10:182–7.

    Article  Google Scholar 

  20. Jones H, Fordice MW, Greenwald RB, et al. Synthesis and analgesic-antiinflammatory activity of some 4- and 5-substituted heteroarylsalicylic acids. J Med Chem 1978;21:1100–4.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaliszan, R., Pilarski, B., OŚmiałowski, K. et al. Analgesic activity of new pyrazine CH and NH acids and their Hydrophobic and electron donating properties. Pharmaceutisch Weekblad Scientific Edition 7, 141–145 (1985). https://doi.org/10.1007/BF02097250

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02097250

Keywords

Navigation