Advertisement

Communications in Mathematical Physics

, Volume 129, Issue 3, pp 561–598 | Cite as

Universality in the Thomas-Fermi-von Weizsäcker model of atoms and molecules

  • Jan Philip Solovej
Article

Abstract

We study the Thomas-Fermi-von Weizsäcker theory of atoms and molecules. The main result is to prove universality of the structure of very large atoms and molecules, i.e., proving that the structure converges as the nuclear charges go to infinity. Furthermore we uniquely characterize the limit density as the solution to a renormalized TFW-equation. This is achieved by characterizing the strong singularities of solutions to the non-linear TFW-system.

Keywords

Neural Network Statistical Physic Complex System Nonlinear Dynamics Quantum Computing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Benguria, R., Brezis, H., Lieb, E.H.: The Thomas-Fermi-von Weizsäcker theory of atoms and molecules. Commun. Math. Phys.79, 167–180 (1981)CrossRefGoogle Scholar
  2. 2.
    Benguria, R., Lieb, E.H.: The most negative ion in the Thomas-Fermi-von Weizsäcker theory of atoms and molecules. J. Phys. B18, 1045–1059 (1985)Google Scholar
  3. 3.
    Brezis, H., Lieb, E.H.: Long range potentials in Thomas-Fermi theory. Commun. Math. Phys.65, 231–246 (1979)CrossRefGoogle Scholar
  4. 4.
    Dreizler, R.M.: Private communicationGoogle Scholar
  5. 5.
    Gagliardo, E.: Ulteriori propieta di alcune classi di funzioni in piu variabili. Ric. Mat.8, 24–51 (1959)Google Scholar
  6. 6.
    Hoffmann-Ostenhof, T.: A comparison theorem for differential inequalities with applications in quantum mechanics. J. Phys. A13, 417–424 (1980)Google Scholar
  7. 7.
    Hughes, W.: An atomic energy lower bound that gives Scott's correction. PhD thesis, Princeton, Department of Mathematics, 1986Google Scholar
  8. 8.
    Liberman, D.A., Lieb, E.H.: Numerical calculation of the Thomas-Fermi-von Weizsäcker function for an infinite atom without electron repulsion. Los Alamos National Laboratory Report, LA 9186-MS, 1981Google Scholar
  9. 9.
    Lieb, E.H.: Bound on the maximum negative ionization of atoms and molecules. Phys. Rev. A29, 3018–3028 (1984)CrossRefGoogle Scholar
  10. 10.
    Lieb, E.H.: Thomas-Fermi and related theories of atoms and molecules. Rev. Mod. Phys.53, 603–640 (1981)CrossRefGoogle Scholar
  11. 11.
    Lieb, E.H., Simon, B.: The Thomas-Fermi theory of atoms, molecules, and solids. Adv. Math.23, 22–116 (1977)CrossRefGoogle Scholar
  12. 12.
    Nirenberg, L.: On elliptic partial differential equations. Ann. Scu. Norm. Sup. Pisa13, 115–162 (1959)Google Scholar
  13. 13.
    Rother, W.: Zur Thomas-Fermi-von Weizsäcker Theorie für Atome und Moleküle. Bayreuther Mathematische Schriften18, 39–145 (1985)Google Scholar
  14. 14.
    Seco, L.A., Sigal, I.M., Solovej, J.P.: Bound on the ionization energy of large atoms. Commun. Math. Phys. (to appear)Google Scholar
  15. 15.
    Siedentop, H., Weikard, R.: On the leading correction of the Thomas-Fermi model: Lower bound — with an appendix by A.M.K. Müller. Invent. Math.97, 159–193 (1989)CrossRefGoogle Scholar
  16. 16.
    Siedentop, H., Weikard, R.: On the leading energy correction for the statistical model of the atom: interacting case. Commun. Math. Phys.112, 471–490 (1987)CrossRefGoogle Scholar
  17. 17.
    Solovej, J.P.: Universality in the Thomas-Fermi-von Weizsäcker Theory of Atoms and Molecules. PhD thesis, Princeton, Department of Mathematics, June 1989Google Scholar
  18. 18.
    Sommerfeld, A.: Asymptotische Integration der Differentialgleichung des Thomas-Fermischen Atoms. Z. Phys.78, 283–308 (1932)CrossRefGoogle Scholar
  19. 19.
    Stich, W., Gross, E.K.U., Malzacher, P., Dreizler, R.M.: Accurate solution of the Thomas-Fermi-Dirac-Weizsäcker variational equations for the case of neutral atoms and positive ions. Z. Phys. A309, 5–11 (1982)CrossRefGoogle Scholar
  20. 20.
    Veron, L.: Singular solutions of some nonlinear elliptic equations. Nonlinear Analysis5, 225–242 (1981)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Jan Philip Solovej
    • 1
  1. 1.Department of MathematicsPrinceton UniversityPrincetonUSA

Personalised recommendations