Skip to main content
Log in

Generalized Drinfeld-Sokolov reductions and KdV type hierarchies

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Generalized Drinfeld-Sokolov (DS) hierarchies are constructed through local reductions of Hamiltonian flows generated by monodromy invariants on the dual of a loop algebra. Following earlier work of De Groot et al., reductions based upon graded regular elements of arbitrary Heisenberg subalgebras are considered. We show that, in the case of the nontwisted loop algebra ℓ(gl n ), graded regular elements exist only in those Heisenberg subalgebras which correspond either to the partitions ofn into the sum of equal numbersn=pr or to equal numbers plus onen=pr+1. We prove that the reduction belonging to the grade 1 regular elements in the casen=pr yields thep×p matrix version of the Gelfand-Dickeyr-KdV hierarchy, generalizing the scalar casep=1 considered by DS. The methods of DS are utilized throughout the analysis, but formulating the reduction entirely within the Hamiltonian framework provided by the classical r-matrix approach leads to some simplifications even forp=1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Drinfeld, V.G., Sokolov, V.V.: Lie algebras and equations of Korteweg-De Vries type. J. Sov. Math.30, 1975–2036 (1985); Equations of Korteweg-De Vries type and simple Lie algebras. Soviet. Math. Dokl.23, 457–462 (1981)

    Article  Google Scholar 

  2. Douglas, M.: Strings in less than one-dimension and the generalized KdV hierarchies. Phys. Lett. B238, 176–180 (1990)

    Google Scholar 

  3. Zamolodchikov, A.B.: Infinite additional symmetries in two dimensional CFT. Theor. Math. Phys.65, 1205–1213 (1986)

    Article  Google Scholar 

  4. Lukyanov, S.L., Fateev, V.A.: Additional symmetries and exactly soluble models in two dimensional conformal field theory. Sov. Sci. Rev. A. Phys.15, 1–116 (1990)

    Google Scholar 

  5. Bais, F.A., Tjin, T., van Driel, P.: Covariantly coupled chiral algebras. Nucl. Phys. B357, 632–654 (1991)

    Article  Google Scholar 

  6. Fehér, L., O'Raifeartaigh, L., Ruelle, P., Tsutsui, I., Wipf, A.: On Hamiltonian reductions of the Wess-Zumino-Novikov-Witten theories. Phys. Rep.222, 1–64 (1992); Generalized Toda theories and-algebras associated with integral gradings. Ann. Phys. (N.Y.)213, 1–20 (1992)

    Article  Google Scholar 

  7. Frenkel, E., Kac, V.G., Wakimoto, M.: Characters and fusion rules forW-algebras via quantized Drinfeld-Sokolov reduction. Commun. Math. Phys.147, 295–328 (1992)

    Article  Google Scholar 

  8. Bowcock, P., Watts, G.M.T.: On the classification of quantumW-algebras. Nucl. Phys. B379, 63–92 (1992)

    Article  Google Scholar 

  9. Gervais, J.L., Matsuo, Y.: ClassicalA n -W-geometry. Commun. Math. Phys.152, 317 (1993) Frappat, L., Ragoucy, E., Sorba, P.:W-algebras and superalgebras from constrained WZW models: a group theoretical classification. Lyon preprint ENSLAPP-AL-391/92 (1992)

    Article  Google Scholar 

  10. De Groot, M.F., Hollowood, T.J., Miramontes, J.L.: Generalized Drinfeld-Sokolov hierarchies. Commun. Math. Phys.145, 57–84 (1992)

    Article  Google Scholar 

  11. Burroughs, N.J., De Groot, M.F., Hollowood, T.J., Miramontes, J.L.: Generalized Drinfeld-Sokolov hierarchies. II. The Hamiltonian structures. Commun. Math. Phys.159, 187–215 (1993); GeneralizedW-algebras and integrable hierarchies. Phys. Lett. B277, 89–94 (1992)

    Article  Google Scholar 

  12. Burroughs, N.J.: Co-adjoint orbits of the generalisedSl(2),Sl(3) KdV hierarchies. Nucl. Phys. B379, 340–376 (1992)

    Article  Google Scholar 

  13. Hollowood, T.J., Miramontes, J.L.: Tau-functions and generalized integrable hierarchies. Preprint OUTP-92-15P, CERN-TH-6594/92 (1992)

  14. Wilson, G.W.: The modified Lax and two-dimensional Toda lattice equations associated with simple Lie algebras. Ergod. Th. and Dynam. Sys.1, 361–380 (1981)

    Google Scholar 

  15. McIntosh, I.: Groups of equivariant loops inSL(n+1, C) and soliton equations. Newcastle preprint (1992)

  16. Kac, V.G., Peterson, D.H.: 112 constructions of the basic representation of the loop group ofE 8. In: Proceedings of Symposium on Anomalies, Geometry and Topology. Bardeen, W.A., White, A.R. (eds.). Singapore: World Scientific 1985

    Google Scholar 

  17. ten Kroode, F., van de Leur, J.: Bosonic and fermionic realizations of the affine algebra\(\widehat{gl}_n \). Commun. Math. Phys.137, 67–107 (1991)

    Article  Google Scholar 

  18. Dickey, L.A.: Soliton equations and Hamiltonian systems. Adv. Ser. in Math. Phys. Vol.12. Singapore: World Scientific 1991

    Google Scholar 

  19. Gelfand, I.M. Dickey, L.A.: The resolvent and Hamiltonian systems. Funct. Anal. Appl.11, 93–104 (1977)

    Article  Google Scholar 

  20. Manin, Yu.I.: Algebraic aspects of nonlinear differential equations. J. Sov. Math.11, 1–122 (1979)

    Article  Google Scholar 

  21. Wilson, G.: Commuting flows and conservation laws for Lax equations. Math. Proc. Cambr. Philos. Soc.86, 131–143 (1979); On two constructions of conservation laws for Lax equations. Q. J. Math. Oxford32, 491–512 (1981)

    Google Scholar 

  22. Tjin, T., van Driel, P.: Coupled WZNW-Toda models and Covariant KdV hierarchies. Amsterdam preprint IFTA-91-04 (1991)

  23. Reyman, A.G., Semenov-Tian-Shansky, A.: Current algebras and nonlinear partial differential equations. Soviet. Math. Dokl.21, 630–634 (1980); A family of Hamiltonian structures, hierarchy of Hamiltonians, and reduction for first-order matrix differential operators. Funct. Anal. Appl.14, 146–148 (1980)

    Google Scholar 

  24. Semenov-Tian-Shansky, M.A.: What is a classical r-matrix. Funct. Anal. Appl.17, 259–272 (1983); Dressing transformations and Poisson group actions. Publ. RIMS Kyoto Univ.21, 1237–1260 (1985)

    Article  Google Scholar 

  25. Reyman, A.G., Semenov-Tian-Shansky, A.: Compatible Poisson structures for Lax equations: an r-matrix approach. Phys. Lett. A130, 456–460 (1988)

    Article  Google Scholar 

  26. Faddeev, L.D., Takhtajan, L.A.: Hamiltonian methods in the theory of solitons. Berlin, Heidelberg, New York: Springer 1986

    Google Scholar 

  27. Kupershmidt, B.A., Wilson, G.: Modifying Lax equations and the second Hamiltonian structure. Invent. Math.62, 403–436 (1981)

    Article  Google Scholar 

  28. Segal, G., Wilson, G.: Loop groups and equations of KdV type. Publ. Math. IHES 5-65 (1985)

  29. Mikhailov, A.V., Olshanetsky, M.A., Perelomov, A.M.: Two-dimensional generalized Toda lattice. Commun. Math. Phys.79, 473–488 (1981)

    Article  Google Scholar 

  30. Kupershmidt, B.A., Wilson, G.: Conservation laws and symmetries of generalized Sine-Gordon equations. Commun. Math. Phys.81, 189–202 (1981)

    Article  Google Scholar 

  31. Mikhailov, A.V.: The reduction problem and the inverse scattering method. Physica D3, 73–117 (1981)

    Article  Google Scholar 

  32. Harnad, J., Saint-Aubin, Y., Shnider, S.: The soliton correlation matrix and the reduction problem for integrable systems. Commun. Math. Phys.93, 33–56 (1984)

    Article  Google Scholar 

  33. Leznov, A.N., Saveliev, M.V.: Group-theoretical methods for integration of nonlinear dynamical systems. Progress in Physics, Vol. 15. Basel: Birkhäuser 1992

    Google Scholar 

  34. Babelon, O., Bonora, L.: Conformal affinesl 2 Toda field theory. Phys. Lett. B244, 220–226 (1990)

    Article  Google Scholar 

  35. Aratyn, H., Ferreira, L.A., Gomes, J.F., Zimerman, A.H.: Kac-Moody construction of Toda type field theories. Phys. Lett. B254, 372–380 (1991)

    Article  Google Scholar 

  36. Ueno, K., Takasaki, K.: Toda lattice hierarchy. In: Advanced Studies in Pure Mathematics4, 1–95 (1984)

  37. Dickey, L.A.: Another example of a τ-function. In: Proceedings of the CRM Workshop on Hamiltonian Systems, Transformation Groups and Spectral transform Methods. Harnad, J., Marsden, J.E. (eds.) Montréal: CRM publications 1990

    Google Scholar 

  38. Date, E., Kashiwara, M., Jimbo, M., Miwa, T.: Transformation groups for soliton equations. In: Non-linear integrable systems — classical theory and quantum theory. Proceedings of the RIMS Symposium. Jimbo, M., Miwa, T. (eds.) Singapore: World Scientific 1983

    Google Scholar 

  39. Bergvelt, M.J., ten Kroode, A.P.E.: τ-functions and zero curvature equations of Toda-AKNS type. J. Math. Phys.29, 1308–1320 (1988)

    Article  Google Scholar 

  40. Kac, V.G., Wakimoto, M.: Exceptional hierarchies of soliton equations. Proceedings of Symposia in Pure Mathematics49, 191–237 (1989)

    Google Scholar 

  41. Dickey, L.A.: On the τ-function of matrix hierarchies of integrable equations. J. Math. Phys.32, 2996–3002 (1991)

    Article  Google Scholar 

  42. van Driel, P.: On a new hierarchy associated with theW (2)3 conformal algebra. Phys. Lett. B274, 179–185 (1992)

    Article  Google Scholar 

  43. Adams, M.R., Bergvelt, M.J.: The Krichever map, vector bundles over algebraic curves, and Heisenberg algebras. Univ. Illinois preprint 1991

  44. ten Kroode, F., van de Leur, J.: Bosonic and fermionic realizations of the affine algebra\(\widehat{so}_{2n} \). Utrecht preprint no. 636 (1991); Level one representations of the affine Lie algebraB (1) n . Utrecht preprint no. 698 (1991); Level one representations of the twisted affine algebrasA (2) n andB (2) n . Utrecht preprint no. 707 (1992)

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by A. Jaffe

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fehér, L., Harnad, J. & Marshall, I. Generalized Drinfeld-Sokolov reductions and KdV type hierarchies. Commun.Math. Phys. 154, 181–214 (1993). https://doi.org/10.1007/BF02096838

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02096838

Keywords

Navigation