Skip to main content
Log in

Massive fields of arbitrary spin in curved space-times

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

A possibility to describe massive fields of spins≧1/2 within general relativity theory without auxiliary fields and subsidiary conditions is proposed. Using the 2-component spinor calculus the Lagrangian is given for arbitrarys in an uniform manner. The related Euler-Lagrange equations are the wave equations studied by Buchdahl and Wünsch. The results are specified for fields of integer and half-integer spin: A suitable generalization of Proca's equation and Lagrangian leads to an equivalent tensor description of bosonic fields, whereas a generalization of Dirac's theory allows an equivalent description of fermionic fields by use of bispinors. AU (1)-gauge invariance of the Lagrangian is obtained by coupling to an electrogmagnetic potential. The current vector of the spin-s field is derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barth, N.H., Christensen, S.M.: Arbitrary spin field equations on curved manifolds with torsion. J. Phys. A: Math. Gen.16, 543–563 (1983)

    Article  Google Scholar 

  2. Barut, A.O., Raczka, R.: Theory of group representations and applications. Warszawa: Polish Scientific Publishers 1977

    Google Scholar 

  3. Birrell, N.D., Davies, P.C.W.: Quantum fields in curved space. Cambridge: Cambridge University Press 1984

    Google Scholar 

  4. Bogoljubov, N.N., Širkov, D.W.: Quantenfelder. Berlin: Dt. Verlag d. Wiss 1984

    Google Scholar 

  5. Buchdahl, H.A.: On the compatibility of relativistic wave equations for particles of higher spin in the presence of a gravitational field. Nuovo Cimento10, 96–103 (1958)

    Google Scholar 

  6. Buchdahl, H.A.: On the compatibility of relativistic wave equations in Riemann spaces. Nuovo Cimento25, 486–496 (1962)

    Google Scholar 

  7. Buchdahl, H.A.: On the compatibility of relativistic wave equations in Riemann spaces II. J. Phys. A: Math. Gen.15, 1–5 (1982)

    Article  Google Scholar 

  8. Christensen, S.M.: Regularisation, renormalisation and covariant geodesic point separation. Phys. Rev. D17, 946–963 (1978)

    Article  Google Scholar 

  9. Collins, G.P., Doughty, N.A.: Systematics of arbitrary-helicity Lagrangian wave equations. J. Math. Phys.28, 448–456 (1987)

    Article  Google Scholar 

  10. Dirac, P.A.M.: The quantum theory of the electron. Proc. Roy. Soc. A117, 610–624 (1928);

    Google Scholar 

  11. Dirac, P.A.M.: The quantum theory of the electron. Part II. Proc. Roy. Soc. A118, 351–361 (1928)

    Google Scholar 

  12. Dirac, P.A.M.: Relativistic wave equations. Proc. Roy. Soc. A155, 447–459 (1936)

    Google Scholar 

  13. Doughty, N.A., Collins, G.P.: Multispinor symmetries for massless arbitrary spin Fierz-Pauli and Rarita-Schwinger wave equations. J. Math. Phys.27, 1639–1645 (1986)

    Article  Google Scholar 

  14. Doughty, N.A., Wiltshire, D.L.: Weyl field strength symmetries for arbitrary helicity and gauge invariant Fierz-Pauli and Rarita-Schwinger wave equations. J. Phys. A: Math. Gen.19, 3727–3739 (1986)

    Article  Google Scholar 

  15. Ebert, D.: Eichtheorien. Berlin: Akademie-Verlag 1989

    Google Scholar 

  16. Fang, J., Fronsdal, C.: Massless fields with half-integer spin. Phys. Rev. D18, 3630–3633 (1978)

    Article  Google Scholar 

  17. Fronsdal, C.: Massless fields with integer spin. Phys. Rev. D18, 3624–3629 (1978)

    Article  Google Scholar 

  18. Fierz, M.: Über die relativistische Theorie kräftefreier Teilchen mit beliebigem Spin. Helv. Phys. Acta12, 3–37 (1939)

    Article  Google Scholar 

  19. Fierz, M., Pauli, W.: On relativistic wave equations for particles of arbitrary spin in an electromagnetic field. Proc. Roy. Soc. A173, 211–232 (1939)

    Google Scholar 

  20. Günther, P.: Huygens' principle and hyperbolic equations. London: Academic Press 1988

    Google Scholar 

  21. Illge, R.: Lagrange-Funktion für massive Teilchen mit ganzzahligem Spin in beliebig gekrümmten Raum-Zeiten. Exp. Tech. Phys.34, 429–432 (1986)

    Google Scholar 

  22. Illge, R.: On Spinor field equations of Buchdahl and Wünsch. Astronom. Nachr.309, 253–257 (1988)

    Google Scholar 

  23. Illge, R.: On Huygens' principle for the relativistic higher spin wave equations of Buchdahl and Wünsch in presence of a gravitational and an electromagnetic field. Math. Nachr.139, 237–243 (1988)

    Google Scholar 

  24. Illge, R.: On potentials for several classes of spinor and tensor fields in curved space-times. Gen. Rel. Grav.20, 551–564 (1988)

    Article  Google Scholar 

  25. Illge, R.: On massless fields with arbitrary spin. Zeitschr. Anal. Anw.11, 25–35 (1992)

    Google Scholar 

  26. Marnelius, R., Martensson, U.: BRST quantization of free massless relativistic particles of arbitrary spin. Nucl. Phys. B321, 185–206 (1989)

    Article  Google Scholar 

  27. Marnelius, R., Martensson, U.: Derivation of manifestly covariant quantum models for spinning relativistic particles. Nucl. Phys. B335, 395–420 (1990)

    Article  Google Scholar 

  28. van Nieuwenhuizen, P.: Supergravity. Phys. Rep.68, 189–398 (1981)

    Article  Google Scholar 

  29. Obukhov, Yu.N.: Arbitrary spin field equations and anomalies in the Riemann-Cartan space-time. J. Phys. A: Math. Gen.16, 3795–3804 (1983)

    Article  Google Scholar 

  30. Penrose, R., Rindler, W.: Spinors and space-time Parts I, II. Cambridge: Cambridge University Press 1984, 1986

    Google Scholar 

  31. Penrose, R., Ward, R.S.: Twistors for flat and curved space-time. In: Held, A. (ed), General Relativity and Gravitation, Vol II, London: Plenum Press 1980, pp. 283–315

    Google Scholar 

  32. Proca, A.: Sur les equations fondamentales des particules elementaires. C.R. Acad. Sci. (Paris)202, 1490–1492 (1936)

    Google Scholar 

  33. Rarita, W., Schwinger, J.: On a theory of particles with half-integral spin. Phys. Rev.60, 61 (1941)

    Article  Google Scholar 

  34. Schmutzer, E.: Relativistische Physik. Leipzig: Teubner-Verlag, 1968

    Google Scholar 

  35. Singh, L.P.S., Hagen, C.R.: Lagrangian formulation for arbitrary spin I: The boson case. Phys. Rev. D9, 898–909 (1974); Singh, L.P.S., Hagen, C.R.: Lagrangian formulation for arbitrary spin II: The fermion case. Phys. Rev. D9, 910–920 (1974)

    Article  Google Scholar 

  36. Tybor, W.: Nonminimal description of spin 3/2. Acta Phys. Lolon.B 19, 847–851 (1988)

    Google Scholar 

  37. Wünsch, V.: Cauchy-Problem und Huygenssches Prinzip bei einigen Klassen spinorieller Feldgleichungen I. Beitr. z. Analysis12, 47–76 (1978); Wünsch, V.: Cauchy-Problem und Huygenssches Prinzip bei einigen Klassen spinorieller Feldgleichungen II. Beitr. z. Analysis13, 147–177 (1979)

    Google Scholar 

  38. Wünsch, V.: Selbstadjungierte huygenssche Differentialgleichungen zweiter Ordnung für nichtskalare Spintensorfelder. Math. Nachr.94, 211–242 (1980)

    Google Scholar 

  39. Wünsch, V.: Cauchy's problem and Huygens' principle for relativistic higher spin wave equations in an arbitrary curved space-time. Gen. Rel. Grav.17, 15–38 (1985)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by K. Gawedzki

Rights and permissions

Reprints and permissions

About this article

Cite this article

Illge, R. Massive fields of arbitrary spin in curved space-times. Commun.Math. Phys. 158, 433–457 (1993). https://doi.org/10.1007/BF02096798

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02096798

Keywords

Navigation