Communications in Mathematical Physics

, Volume 127, Issue 2, pp 395–424 | Cite as

Ocneanu cell calculus and integrable lattice models

  • Ph. Roche


We show that cell calculus (first introduced by Ocneanu in the context of relative position of factors) is a technique which permits us to connect different integrable models. It generalizes the Vertex-IRF correspondence.


Neural Network Statistical Physic Complex System Relative Position Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [ABF] Andrews, G. E., Baxter, R. J., Forester, P. J.: J. Stat. Phys.35, 193 (1983)CrossRefGoogle Scholar
  2. [AuY] Au-Yang, H., MacCoy, B., Perk, J. H. H., Tang, S., Yan, M.: Commuting transfer matrices of star triangle equations with genus greater than 1. Phys. Lett. A123 219 (1987)CrossRefGoogle Scholar
  3. [AW] Akutsu, Y., Wadati, M.: Commun. Math. Phys.117, 243 (1988)CrossRefGoogle Scholar
  4. [Ba.1] Baxter, R. J.: Exactly solved models in statistical mechanics. New York: Academic Press 1982Google Scholar
  5. [Ba.2] Baxter, R. J.: Ann. Phys.76 25 (1973)CrossRefGoogle Scholar
  6. [Ba.3] Baxter, R. J., Perk, J. H. H., Au-Yang, H.: New solutions of the star triangle relations for the chiral potts model. Phys. Lett. A128, 138 (1988)CrossRefGoogle Scholar
  7. [BPZ] Belavin, A. A., Polyakov, A. M., Zamolodchikov, A. B.: Nucl. Phys. B241, 333 (1984)CrossRefGoogle Scholar
  8. [BW] Birman, J., Wenzl, H.: Braids, Link polynomials and a new algebra. Columbia University preprint 1987Google Scholar
  9. [CIZ] Cappelli, A., Itzykson, C., Zuber, J. B.: Commun. Math. Phys.113 1 (1987)CrossRefGoogle Scholar
  10. [DJKMO] Date, E., Jimbo, M., Kuniba, A., Miwa, T., Okado, M.: Nucl. Phys. B290, [FS20], 231 (1987)CrossRefGoogle Scholar
  11. [Dr] Drinfeld, V. G.: Quantum groups, Proc. I. C. M. Berkeley 1986Google Scholar
  12. [DGH] Dixon, L., Ginsparg, P., Harvey, J.: Nucl. Phys. B306, 470 (1988)CrossRefGoogle Scholar
  13. [DSZ] DiFrancesco, P., Saleur, H., Zuber, J. B.: Nucl. Phys. B300 [FS22], 393 (1988)CrossRefGoogle Scholar
  14. [DZ] DiFrancesco, Ph., Zuber, J. B.:SU(N) Lattice integrable models associated with graphs. S. Ph-T/89/92 Juin 1989 preprintGoogle Scholar
  15. [FG] Fendley, P., Ginsparg, P.: Non-critical orbifolds, Harvard preprint 1989Google Scholar
  16. [Ga] Gantmacher, F. R.: The theory of Matrices 2. Chelsea Publishing Company 1959Google Scholar
  17. [Gi.1] Ginsparg, P.: Applied conformal field theory. Les Houches Proceedings 1988Google Scholar
  18. [Gi.2] Ginsparg, P.: Nucl. Phys. B295, 153 [FS21] (1988)CrossRefGoogle Scholar
  19. [Ji] Jimbo, M.: Commun. Math. Phys.102, 537 (1986)CrossRefGoogle Scholar
  20. Jimbo, M.: Lett. Math. Phys.11, 247 (1986)CrossRefGoogle Scholar
  21. [Jo.1] Jones, V. F. R.: Index for subfactors 1983. Invent. Math.72, 1 (1983)CrossRefGoogle Scholar
  22. [Jo.2] Jones, V. F. R.: Hecke algebra, representations of Braid group and Link Polynomials. Ann. Math.126 335 (1987)Google Scholar
  23. [KRS] Kulish, P. P., Reshetikhin, N. Y., Sklyanin, E. K.: Lett. Math. Phys.5, 393 (1981)CrossRefGoogle Scholar
  24. [McK] MacKay, J.: Cartan matrices, finite groups of quaternions and Kleinian singularities. Proc. Am. Math. Soc. 1981Google Scholar
  25. [MS] Moore, G., Seiberg, N.: Classical and quantum CFT. Commun. Math. Phys.123, 177 (1989)CrossRefGoogle Scholar
  26. [Oc] Ocneanu, A.: Quantized groups, string algebras and Galois theory for algebras in Operator algebra and applications. Lond. Math. Soc. Lecture note Series136 Google Scholar
  27. [Pa.1] Pasquier, V.: Nucl. Phys. B285, [FS 19], 162 (1987)CrossRefGoogle Scholar
  28. [Pa.2] Pasquier, V.: Commun. Math. Phys.118, 355 (1988)CrossRefGoogle Scholar
  29. [Pa.3] Pasquier, V.: Thesis unpublished 1988Google Scholar
  30. [Pa.4] Pasquier, V.: J. Phys. A Math. Gen.20, L21 (1987)CrossRefGoogle Scholar
  31. [Pa.5] Pasquier, V.: J. Phys. A Math. Gen.20, L1229 (1987)CrossRefGoogle Scholar
  32. [Sk] Sklyanin, V. G.: Funct. Anal. Appl.17, 223 (1983)Google Scholar
  33. [Su] Sunder, V. S.: An invitation to von Neumann algebras. Berlin, Heidelberg, New York: Springer 1987Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Ph. Roche
    • 1
  1. 1.Centre de Physique TheoriqueEcole PolytechniquePalaiseau CedexFrance

Personalised recommendations