Advertisement

Communications in Mathematical Physics

, Volume 127, Issue 2, pp 285–294 | Cite as

Commutator anomalies and the Fock bundle

  • Jouko Mickelsson
Article

Abstract

We show that the anomalous finite gauge transformations can be realized as linear operators acting on sections of the bundle of fermionic Fock spaces parametrized by vector potentials, and more generally, by splittings of the fermionic one-particle space into a pair of complementary subspaces. On the Lie algebra level we show that the construction leads to the standard formula for the relevant commutator anomalies.

Keywords

Neural Network Statistical Physic Complex System Linear Operator Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BG] Banerjee, R., Ghosh, S.: The Gauss operator in anomalous gauge theories: A Hamiltonian formulation. Modern Phys. Lett.A4, 855 (1989)CrossRefGoogle Scholar
  2. [CS] Cabra, D., Schaposnik, F.A.: On regularization ambiguities in fermionic models. J. Math. Phys.30, 816 (1989)CrossRefGoogle Scholar
  3. [DT] Dunne, G.V., Trugenberg, C.A.: Kinetic normal ordering and the Hamiltonian structure ofU(1) Chiral anomalies in 3+1 dimensions. Preprint CTP-1708, M.I.T., Mass., 1989Google Scholar
  4. [F] Faddeev, L.: Operator anomaly for the Gauss law. Phys. Lett.145B, 81 (1984); Faddeev, L., Shatasvili, S.L.: Theor. Math. Phys.60, 770 (1984)Google Scholar
  5. [FHK] Fujiwara, T., Hosono, S., Kitakado, S.: Chirally Gauged Wess-Zumino-Witten models as constraint system. Modern Phys. Lett.A3, 1585 (1988)CrossRefGoogle Scholar
  6. [HS] Hosono, S., Seo, K.: Derivation of chiral anomalies and commutator anomalies in a fixed time regularization method. Phys. Rev.D38, 1296 (1988)CrossRefGoogle Scholar
  7. [HT] Harada, K., Tsutsui, I.: A consistent Gauss law in anomalous gauge theory. Progr. Theor. Phys.78, 675 (1987)Google Scholar
  8. [J] Jo, S.-C.: Commutator of gauge generators in non-Abelian chiral theory. Nucl. Phys.B256, 616 (1985)CrossRefGoogle Scholar
  9. [JJ] Jackiw, R., Johnson, K.: Anomalies of the axial vector current. Phys. Rev.182, 1459 (1969)CrossRefGoogle Scholar
  10. [KY] Kolokolov, I.V., Yelkhovsky, A.S.: Schwinger terms as a source of gauge anomaly in Hamiltonian approach. Preprint, Inst. of Nuclear Physics, Novosibirsk 1987Google Scholar
  11. [L] Lundberg, Lars-Erik: Quasi-Free Second Quantization. Commun. Math. Phys.50, 103 (1976)CrossRefGoogle Scholar
  12. [M1] Mickelsson, J.: Chiral anomalies in even and odd dimensions. Commun. Math. Phys.97, 361 (185); On a relation between massive Yang-Mills theories and dual string models. Lett. Math. Phys.7, 45 (1983); Kac-Moody groups, topology of the Dirac determinant bundle, and fermionization. Commun. Math. Phys.110, 173 (1987)Google Scholar
  13. [M2] Mickelsson, J.: Current Algebras and Groups. London, New York: Plenum Press (in press); current algebra representation for the 3+1 dimensional Dirac-Yang-Mills theory. Commun. Math. Phys.117, 261 (1988)Google Scholar
  14. [MR] Mickelsson, J., Rajeev, S.: Current algebras ind+1 dimensions and determinant bundles over infinite-dimensional Grassmannians. Commun. Math. Phys.116, 365 (1988)CrossRefGoogle Scholar
  15. [NA] Nelson, P., Alvarez-Gaumé, L.: Hamiltonian Interpretation of Anomalies. Commun. Math. Phys.99, 103 (1985)CrossRefGoogle Scholar
  16. [NS] Niemi, A., Semenoff, G.: Quantum holonomy and the chiral gauge anomaly. Phys. Rev. Lett.55, 927 (1985)CrossRefGoogle Scholar
  17. [PS] Pressley, A., Segal, G.: Loop Groups. Oxford: Clarendon Press 1986Google Scholar
  18. [R] Rajeev, S.: Fermions from bosons in 3+1 dimensions through anomalous commutators. Phys. Rev.D29, 2944 (1984)CrossRefGoogle Scholar
  19. [RSF] Reiman, A.C., Semenov-Tyan-Shanskii, M.A., Faddeev L.D.: Quantum anomalies and cocycles ongauge groups. J. Funct. Anal. Appl.18, 319 (1985)CrossRefGoogle Scholar
  20. [Se] Segal, G.: Faddeev's anomaly in Gauss' law. Preprint (unpublished). Department of Math., Oxford University 1985Google Scholar
  21. [Si] Singer, I.: Families of Dirac operators with applications to physics. Asterisque323, 1985Google Scholar
  22. [Y] Yamagishi, H.: A space-time approach to chiral anomalies. Preprint, Department of Physics, State University of New York at Stony Brook 1987Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • Jouko Mickelsson
    • 1
  1. 1.Department of MathematicsUniversity JyväskyläJyväskyläFinland

Personalised recommendations