Advertisement

Communications in Mathematical Physics

, Volume 127, Issue 2, pp 273–284 | Cite as

On the derivation of Hawking radiation associated with the formation of a black hole

  • Klaus Fredenhagen
  • Rudolf Haag
Article

Abstract

We show how in gravitational collapse the Hawking radiation at large times is precisely related to a scaling limit on the sphere where the star radius crosses the Schwarzschild radius (as long as the back reaction of the radiation on the metric is neglected). For a free quantum field it can be exactly evaluated and the result agrees with Hawking's prediction. For a realistic quantum field theory no evaluation based on general principles seems possible. The outcoming radiation depends on the field theoretical model.

Keywords

Radiation Neural Network Black Hole Statistical Physic Field Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hawking, S.W., Ellis, G.F.R.: The large scale structure of space-time, Cambridge: Cambridge University Press 1980Google Scholar
  2. 2.
    Bekenstein, J.D.: Phys. Rev.D7, 2333 (1973)CrossRefGoogle Scholar
  3. 3.
    Hawking, S.W.: Commun. Math. Phys.43, 199 (1975)Google Scholar
  4. 4.
    Bisognano, J.J. Wichmann, E.H.: J. Math. Phys.17, 303 (1976)CrossRefGoogle Scholar
  5. 5.
    Sewell, G.L.: Phys. Lett.79A, 23 (1980)Google Scholar
  6. 6.
    Unruh, W.G.: Phys. Rev.D14, 870 (1976)CrossRefGoogle Scholar
  7. 7.
    Fulling, S.A.: Phys. Rev.D7, 2850 (1973)CrossRefGoogle Scholar
  8. 8.
    Haag, R., Narnhofer, H., Stein, U.: Commun. Math. Phys.94, 219 (1984)CrossRefGoogle Scholar
  9. 9.
    Fredenhagen, K., Haag, R.: Commun. Math. Phys.108, 91 (1987)CrossRefGoogle Scholar
  10. 10.
    Adler, S., Liebermann, J., Ng, Y.J.: Ann. Phys.106, 279 (1978); Adler, S., Liebermann, J.: Ann. Phys.113, 294 (1977)Google Scholar
  11. 11.
    Wald, R.M.: Commun. Math. Phys.54, 1 (1977); Phys. Rev.D17, 1477 (1978)CrossRefGoogle Scholar
  12. 12.
    Fulling, S.A., Sweeny, M., Wald, R.M.: Commun. Math. Phys.63, 257 (1981)CrossRefGoogle Scholar
  13. 13.
    Fulling, S.A., Narcowich, F.J., Wald, R.M.: Ann. Phys. (N.Y.)136, 243 (1981)CrossRefGoogle Scholar
  14. 14.
    Kay, B.S., Wald, R.M.: Proceedings of the XVth international conference on differential geometric methods in theoretical physics (Clausthal 1986) Doebner, H.D., Henning, J.D. (eds.). Singapore: World Scientific 1987; Kay, B.S., Wald, R.M.: Theorems on the uniqueness and thermal properties of stationary, nonsingular, quasi-free states on spacetime with a bifurcate killing horizon (Preprint 1988)Google Scholar
  15. 15.
    Bernard, D.: Phys. Rev.D33, 3581 (1986)CrossRefGoogle Scholar
  16. 16.
    Hartle, J.R., Hawking, S.W.: Phys. Rev.D13, 2188 (1976)CrossRefGoogle Scholar
  17. 17.
    Gibbons, E.W., Hawking, S.W.: Phys. Rev.D15, 2738 (1977)CrossRefGoogle Scholar
  18. 18.
    Dimock, J., Kay, B.S.: Ann. Phys. (N.Y.)175, 366 (1987)CrossRefGoogle Scholar
  19. 19.
    De Alfaro, V., Regge, T.: Potential scattering. Amsterdam: North-Holland 1965Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Klaus Fredenhagen
    • 1
  • Rudolf Haag
    • 2
  1. 1.Institut für Theorie der ElementarteilchenFU BerlinW. BerlinFederal Republic of Germany
  2. 2.II. Institut für Theoretische PhysikUniversität HamburgHamburgFederal Republic of Germany

Personalised recommendations