Communications in Mathematical Physics

, Volume 127, Issue 2, pp 239–252 | Cite as

Supersymmetry and the Möbius inversion function

  • Donald Spector


We show that the Möbius inversion function of number theory can be interpreted as the operator (−1) F in quantum field theory. Consequently, we are able to provide physical interpretations for various properties of the Möbius inversion function. These include a physical understanding of the Möbius Inversion Formula and of a result that is equivalent to the prime number theorem. Supersymmetry and the Witten index play a central rôle in these constructions.


Neural Network Statistical Physic Field Theory Complex System Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akhoury, R., Comtet, A.: Anomalous Behavior oof the Witten Index-Exactly Soluble Models. Nucl. Phys.B246, 253–278 (1984)CrossRefGoogle Scholar
  2. 2.
    Alvarez-Gaumé, L.: Supersymmetry and the Atiyah-Singer Index Theorem. Commun. Math. Phys.90, 161–173 (1983)CrossRefGoogle Scholar
  3. 3.
    Apostol, T.M.: An introductio to analytic number theory. Berlin, Heidelberg, New York: Springer 1976Google Scholar
  4. 4.
    Apostol, T.M.: Modular functions and dirichlet series in numer theory. Berlin, Heidelberg, New York: Springer 1976Google Scholar
  5. 5.
    Ayoub, R.G.: An introduction to the analytic theory of numbers. Mathematical Survey, No. 10. Providence, R.I.: American Mathematical Society 1963Google Scholar
  6. 6.
    Becchi, C., Rouet, A., Stora, R.: An Abelian Higgs-Kibble model, unitarity of theS-operator. Phys. Lett.52B, 344–346 (1974)Google Scholar
  7. 7.
    Becchi, C., Rouet, A., Stora, R.: Renormalization of gauge theories. Ann. Phys.98, 297–321 (1976)Google Scholar
  8. 8.
    Candelas, P., Horowitz, G., Strominger, A., Witten, E.: Vacuum configuorations for superstrings. Nucl. Phys.B258, 46–74 (1985)CrossRefGoogle Scholar
  9. 9.
    Cecotti, S., Girardello, L.: Functional measue, topology, and dynamical supersymmetry breaking. Phys. Lett.110B, 39–43 (1982)Google Scholar
  10. 10.
    Enderton, H. B.: A matyhematical introduction to logic. New York: Academic Press 1972Google Scholar
  11. 11.
    Gates, S. J., Jr., Grisaru, M., Rocek, M., Siegel, W.: Supeerspace. Reading MA.: Bemjamin/Cummings 1983Google Scholar
  12. 12.
    Georgi, H. M.: Lie algebras and particle Physics. Reading, MA.: Benjamin/Cummings 1982Google Scholar
  13. 13.
    Green, M. B., Schwarz, J. H., Witten, E.: Superstring theory, Vol. I and II. Cambridge, New York: Cambridge University Press 1987Google Scholar
  14. 14.
    Hagedorn, R.: Hadromic matter near the boiling point. Nuovo Cimento56A, 1027–1057 (1968)Google Scholar
  15. 15.
    Moore, G.: Atkin-Lehner symmetry. Nucl. Phys.B293, 139–188 (1987)CrossRefGoogle Scholar
  16. 16.
    Nicolai, H.: Supersymmetry and functional integration measures. Nucl. Phys.B176, 419–428 (1980)CrossRefGoogle Scholar
  17. 17.
    Niven, I., Zuckerman, H. S.: An introduction to the theory of numbers, 3rd (ed). New York: John Wiley 1972Google Scholar
  18. 18.
    Serre, J.-P.: A course in arithmetic. Berlin, Heidelberg, New York: Springer 1973Google Scholar
  19. 19.
    Spector, D.: Multiplicative functions, dirichlet convolution, and quantum systems. Phys. Lett. A. (in press)Google Scholar
  20. 20.
    Tinkham, M.: Group theory and quantum mechanics. New York: McGram-Hill 1975Google Scholar
  21. 21.
    Tichmarsh, E. C.: The theory of the Riemann zeta function. Oxford: Clarendon Press 1951Google Scholar
  22. 22.
    Tyupin, I. V.: Gauge invariance in field theory and in statistical physics in the operator formulations. Lebedev preprint FIAN No. 39 (1975)Google Scholar
  23. 23.
    Wess, J., Bagger, J.: Supersymmetry and supergravity., Princeton, NJ: Princeton University Press 1983Google Scholar
  24. 24.
    Witten, E.: Constraints on supersymmetry breaking. Nucl. Phys.B202, 253–316 (1982)CrossRefGoogle Scholar
  25. 25.
    Witten, E.: Topological quantum field theory. Commun. Math. Phys.117, 353–386 (1988)CrossRefGoogle Scholar
  26. 26.
    Witten, E.: Quantum field theory and the Jones polynomial. Commun. Math. Phys.Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Donald Spector
    • 1
  1. 1.Institute for Theoretical PhysicsUniversity of UtrechtUtrechtThe Netherlands

Personalised recommendations