Advertisement

Communications in Mathematical Physics

, Volume 156, Issue 1, pp 201–219 | Cite as

Modular structure and duality in conformal quantum field theory

  • R. Brunetti
  • D. Guido
  • R. Longo
Article

Abstract

Making use of a recent result of Borchers, an algebraic version of the Bisognano-Wichmann theorem is given for conformal quantum field theories, i.e. the Tomita-Takesaki modular group associated with the von Neumann algebra of a wedge region and the vacuum vector coincides with the evolution given by the rescaled pure Lorentz transformations preserving the wedge. A similar geometric description is valid for the algebras associated with double cones. Moreover essential duality holds on the Minkowski spaceM, and Haag duality for double cones holds provided the net of local algebras is extended to a pre-cosheaf on the superworld≈M, i.e. the universal covering of the Dirac-Weyl compactification ofM. As a consequence a PCT symmetry exists for any algebraic conformal field theory in even spacetime dimension. Analogous results hold for a Poincaré covariant theory provided the modular groups corresponding to wedge algebras have the expected geometrical meaning and the split property is satisfied. In particular the Poincaré representation is unique in this case.

Keywords

Universal Covering Geometrical Meaning Lorentz Transformation Spacetime Dimension Conformal Field Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Araki, H.: A lattice of von Neumann algebras associated with the quantum field theory of a free Bose field. J. Math. Phys.4, 1343–1362 (1963)CrossRefGoogle Scholar
  2. 2.
    Bisognano, J., Wichmann, E.: On the duality condition for a Hermitian scalar field. J. Math. Phys.16, 985–1007 (1975)CrossRefGoogle Scholar
  3. 3.
    Borchers, H.J.: The CPT theorem in two-dimensional theories of local observables. Commun. Math. Phys.143, 315–332 (1992)CrossRefGoogle Scholar
  4. 4.
    Buchholz, D.: On the structure of local quantum fields with non-trivial interaction. In: Proc. of the Int. Conf. on Operator Algebras, Ideals and their Applications in Theoretical Physics, Baumgärtel, Lassner, Pietsch, Uhlmann, (eds), Leipzig: Teubner Verlagsgesellschaft 1978, pp. 146–153Google Scholar
  5. 5.
    Buchholz, D., D'Antoni, C.: Private communicationGoogle Scholar
  6. 6.
    Buchholz, D., Schulz-Mirbach, H.: Haag duality in conformal quantum field theory. Rev. Math. Phys.2, 105 (1990)CrossRefGoogle Scholar
  7. 7.
    Dirac, P.A.M.: Wave equations in conformal space. Ann. Math.37, 429 (1936)MathSciNetGoogle Scholar
  8. 8.
    Doplicher, S., Longo, R.: Standard and split inclusions of von Neumann algebras. Invent. Math.73, 493 (1984)CrossRefGoogle Scholar
  9. 9.
    Haag, R.: Local Quantum Physics. Berlin, Heidelberg, New York: Springer 1992Google Scholar
  10. 10.
    Fredenhagen, K.: Generalization of the theory of superselection sectors. In: The Algebraic Theory of Superselection Sectors. Kastler, D. (ed.) Singapore: World Scientific 1990Google Scholar
  11. 11.
    Fredenhagen, K., Jörss, M.: In preparation, see: Jörss, M.: On the existence of point-like localized fields in conformally invariant quantum physics. Desy PreprintGoogle Scholar
  12. 12.
    Gabbiani, F., Fröhlich, J.: Operator algebras and Conformal Field Theory. PreprintGoogle Scholar
  13. 13.
    Gilman, L., Jerison, M.: Rings of continuous functions. Berlin, Heidelberg, New York: Springer 1976Google Scholar
  14. 14.
    Guido, D., Longo, R.: Relativistic invariance and charge conjugation in quantum field theory. Commun. Math. Phys.148, 521–551 (1992)CrossRefGoogle Scholar
  15. 15.
    Hislop, P., Longo, R.: Modular structure of the local observables associated with the free massless scalar field theory. Commun. Math. Phys.84, 84 (1982)CrossRefGoogle Scholar
  16. 16.
    Longo, R.: Algebraic and modular structure of von Neumann algebra of physics. Proc. of Symposia in Pure Mathematics38, 551–566 (1982)Google Scholar
  17. 17.
    Mack, G., Lüscher, M.: Global conformal invariance in quantum field theory. Commun. Math. Phys.41, 203 (1975)CrossRefGoogle Scholar
  18. 18.
    Postnikov, M.: Leçons de geometrie. Groupes et algebres de Lie. Moscou: Éditios Mir 1985Google Scholar
  19. 19.
    Schroer, B.: Recent developments of algebraic methods in quantum field theory. Int. J. Modern Phys. B6, 2041–2059 (1992)CrossRefGoogle Scholar
  20. 20.
    Schroer, B., Swieca, J.A.: Conformal transformations for quantized fields. Phys. Rev. D10, 480 (1974)CrossRefGoogle Scholar
  21. 21.
    Segal, I.E.: Causally oriented manifolds and groups. Bull. Am. Math. Soc.77, 958 (1971)Google Scholar
  22. 22.
    Strâtilâ, S., Zsido, L.: Lectures on von Neumann algebras. England: Abacus Press 1979Google Scholar
  23. 23.
    Streater, R.F., Wightman, A.S.: PCT, spin and statistics, and all that. Reading, MA: Addison Wesley 1989Google Scholar
  24. 24.
    Todorov, I.T., Mintchev, M.C., Petkova, V.B.: Conformal invariance in quantum field theory. Publ. Scuola Normale Superiore, Pisa 1978Google Scholar
  25. 25.
    Weyl, H.: Space-Time-Matter. Dover Publications 1950Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • R. Brunetti
    • 1
  • D. Guido
    • 2
  • R. Longo
    • 2
  1. 1.Dipartimento di FisicaUniversità di Napoli, “Federico II”NapoliItaly
  2. 2.Dipartimento di MatematicaUniversità di Roma “Tor Vergata”RomaItaly

Personalised recommendations