Communications in Mathematical Physics

, Volume 156, Issue 1, pp 169–177 | Cite as

Densité des vecteurs propres généralisés d'une classe d'opérateurs compacts non auto-adjoints et applications

  • Marie Thérèse Aimar
  • Abdelkader Intissar
  • Jean Martin Paoli


We consider a closed densely defined linear operatorT in a Hilbert spaceE, and assume the existence ofξ0ϱ(T) such thatK = (T -ξ0I)-1 is compact and the existence ofp>0 such thats n (K)=o((n−1/p)), whereS n (K) denotes the sequence of non-zero eigenvalues of the compact hermitian operator\(\sqrt {K*K} \). In this work, sufficient conditions (announced in [1]) are introduced to assure that the closed subspace ofE spanned by the generalized eigenvectors ofT coincides withE. These conditions are in particular verified by a family of non-self-adjoint operators arising in reggeon's field theory.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aimar, M.T., Intissar, A. et Paoli, J.M.: Densité des vecteurs, propres généralisés d'une classe d'opérateurs compacts non auto-adjoints. C. R. Acad. Sci. Paris,315 Série I (1992)Google Scholar
  2. 2.
    Ando, T. et Zerner, M.: Sur une valeur propre d'un opérateur, Commun. Math. Phys.93 (1984)Google Scholar
  3. 3.
    Bargmann, V.: On a Hilbert space of analytic functions and an associated integral transform. I. Commun. Pure App. Math14 (1962)Google Scholar
  4. 4.
    Dunford, N, Schwartz, J.T.: Linear operators. II, III. In: Pure Appl. Math., Vol. 7. New York: Interscience, 1963Google Scholar
  5. 5.
    Gribov, V.: J. E. T. P. (Sov. Phys.),26 (1968), 414Google Scholar
  6. 6.
    Gohberg, I.C., Krein, M.G.: Introduction to the theory of linear non-self-adjoint operators. A.M.S18 (1969)Google Scholar
  7. 7.
    Intissar, A.: Etude spectrale d'une famille d'opérateurs non-symétriques intervenant dans la théorie des champs de reggeons. Commun. Math. Phys.113 (1987)Google Scholar
  8. 8.
    Intissar, A.: Quelques nouvelles propriétés spectrales de l'hamiltonien de la théorie des champs de reggeons. C. R. Acad. Sci. Paris308 Série I (1989)Google Scholar
  9. 9.
    Intissar, A.: Théorie spectrale dans l'espace de Bargmann. Cours de D.E.A. Université de Besançon (1989)Google Scholar
  10. 10.
    Lang, P., Locker, J.: Denseness of the generalized eigenvectors of anH-S discrete operator. J. Funct. Anal.82, No. 2 (1989)Google Scholar
  11. 11.
    Reed, M., Simon, B.: Methods of modern mathematical physics. IV. Analysis of operators. London, New York: Academic Press, 1978Google Scholar
  12. 12.
    Taylor, A.E., Lay, D.C.: Introduction to functional analysis. New York: Wiley, 1980Google Scholar
  13. 13.
    Titchmarsh, E.C.: The theory of functions. Oxford: Oxford University PressGoogle Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Marie Thérèse Aimar
    • 1
  • Abdelkader Intissar
    • 2
  • Jean Martin Paoli
    • 2
  1. 1.Département de MathématiquesUniversité de ProvenceMarseille Cedex 3France
  2. 2.Département de MathématiquesUniversité de CorteCorteFrance

Personalised recommendations