Advertisement

Communications in Mathematical Physics

, Volume 156, Issue 1, pp 101–126 | Cite as

The Efimov effect. Discrete spectrum asymptotics

  • A. V. Sobolev
Article

Abstract

We study a three-particle Schrödinger operatorH for which none of the two-particle subsystems has negative bound states and at least two of them have zero energy resonances. We prove that under this condition the numberN(z) of bound states ofH belowz<0 has the asymptotics\(N(z) \sim \mathfrak{A}_0 |\log |z||\) asz→-0, where the coefficient\(\mathfrak{A}_0 \) depends only on the ratio of masses of the particles.

Keywords

Neural Network Statistical Physic Complex System Nonlinear Dynamics Quantum Computing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albeverio, S., Høegh-Krohn, R., Wu, T. T.: A class of exactly solvable three-body quantum mechanical problems and the universal low energy behaviour. Phys. Lett. A.83, 3, 105–109 (1981)CrossRefGoogle Scholar
  2. 2.
    Amado, R.D., Noble, J.V.: On Efimov's Effect: A new pathology of three-particle systems. Phys. Lett. B35, 25–27 (1971); II, Phy. Lett D (3) 5, 1992–2002 (1972)CrossRefGoogle Scholar
  3. 3.
    Birman, M.Sh., Solomyak, M.Z.: Spectral theory of selfadjoint operators in Hilbert space. Dordrecht: D. Reidel P.C., 1987Google Scholar
  4. 4.
    Efimov, V.: Energy levels arising from resonant two-body forces in a three-body system. Phys. Lett. B33, 563–564 (1970)CrossRefGoogle Scholar
  5. 5.
    Erdélyi, A., (Ed.): Higher transcendental functions. Vol. 2, New York, Toronto, London: McGraw-Hill 1953Google Scholar
  6. 6.
    Faddeev, L.D.: Mathematical aspects of the three-body problem in the quantum scattering theory. Trudy Mat. Inst. Steklov.69 (1963) (Russian)Google Scholar
  7. 7.
    Faddeev, L.D., Merkuriev, S.P: Scattering theory. Leningrad: Nauka, 1989 (Russian)Google Scholar
  8. 8.
    Grenander, U., Szegő, G.: Toeplitz forms and their applications. 2nd ed., New York: Chelsea P.C., 1984Google Scholar
  9. 9.
    Jensen, A., Kato, T.: Spectral properties of Schrödinger operators and time-decay of the wave functions. Duke. Math. J.46, 5, 583–611 (1979)CrossRefGoogle Scholar
  10. 10.
    Ovchinnikov, Yu. N., Sigal, I.M.: Number of bound states of three body systems and Efimov's effect. Ann. Phys.123, 274–295 (1979)CrossRefGoogle Scholar
  11. 11.
    Tamura, H.: The Efimov effect of three-body Schrödinger operators. J. Funct. Anal.95, 433–459 (1991)CrossRefGoogle Scholar
  12. 12.
    Yafaev, D.R.: On the theory of the discrete spectrum of the three-particle Schrödinger operator. Math. USSR-Sb.23, 535–559 (1974)Google Scholar
  13. 13.
    Yafaev, D.R.: On the zero resonance for the Schrödinger equation. Notes of LOMI Seminars51 (1975) (Russian)Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • A. V. Sobolev
    • 1
    • 2
  1. 1.Département de Mathématiques et InformatiqueUniversité Paris-NordVilletaneuseFrance
  2. 2.St-Petersburg Branch of the Steklov Institute (SPOMI)St-PetersburgRussia

Personalised recommendations