Skip to main content
Log in

Log-Sobolev inequalities for infinite one dimensional lattice systems

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

It is shown that a unique Gibbs measure of infinite spin system with short range interaction on one dimensional lattice satisfies log-Sobolev inequality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gross, L.: Logarithmic Sobolev inequalities. Am. J. Math.97, 1061–1083 (1976)

    Google Scholar 

  2. Davies, E. B., Gross, L., Simon, B.: Hypercontractivity: A bibliographical review, To appear in Proceedings of the Hoegh-Krohn Memorial Conference

  3. Nelson, E.: The free Markov field. J. Funct. Anal.12, 211–227 (1973)

    Google Scholar 

  4. Simon, B., Hoegh-Krohn, R.: Hypercontractive semigroups and two dimensional self-coupled Bose fields. J. Funct. Anal.9, 121–180 (1972)

    Google Scholar 

  5. Carlen, E. A., Stroock, D. W.: An application of the Barkry-Emery criterion to infinite dimensional diffusions, pp. 341–348 in Sem. de Probabilities XX. Azema, J., Yor, M. (eds.) Lecture Notes in Mathematics, vol. 1204. Berlin, Heidelberg, New York: Springer

  6. Bakry, E., Emery, M.: Hypercontractivite de semi-groupes des diffusion. C. R. Acad. Sci. Paris Ser.I299, 775–777 (1984); Diffusions hypercontractives, pp. 177–206 in Sem. de Probabilities XIX. Azema, J., Yor, M. (eds.). Lecture Notes in Mathematics, vol. 1123. Berlin, Heidelberg, New York: Springer

    Google Scholar 

  7. Holley, R. A., Stroock, D. W.:L 2 Theory for stochastic Ising model. Z. Wahr. v. Geb.35, 87–101 (1976)

    Google Scholar 

  8. Holley, R. A., Stroock, D. W.: Application of the stochastic Ising model to the Gibbs states. Commun. Math. Phys.48, 249–265 (1976)

    Google Scholar 

  9. Holley, R. A., Stroock, D. W.: In one and two dimensions, every stationary measure for a stochastic Ising model is a Gibbs state. Commun. Math. Phys.55, 37–45 (1977)

    Google Scholar 

  10. Holley, R. A., Stroock, D. W.: Diffusions on an infinite dimensional torus. J. Funct. Anal.42, 29–63 (1981)

    Google Scholar 

  11. Holley, R. A., Stroock, D. W.: Logarithmic Sobolev inequalities and stochastic Ising models. J. Stat. Phys.46, 1159–1194 (1987)

    Google Scholar 

  12. Holley, R. A., Stroock, D. W.: Uniform andL 2 convergence in one dimensional stochastic Ising models. Commun. Math. Phys.123, 85–93 (1989)

    Google Scholar 

  13. Zegarlinski, B.: On log-Sobolev inequalities for infinite lattice systems. Lett. Math. Phys. 20 (1990)

  14. Zegarlinski, B.: Dobrushin uniqueness theorem and log-Sobolev inequalities, Bochum November 1989

  15. Föllmer, H.: Phase transition and Martin boundary. In: Sem. de Probabilities Strasbourg IX. Lecture Notes in Mathematics, vol. 465. Berlin, Heidelberg, New York: Springer

  16. Preston, Ch.: Random fields. Lecture Notes in Mathematics. vol. 534. Berlin, Heidelberg, New York: Springer

  17. Dobrushin, R. L.: Prescribing a system of random variables by conditional distributions. Theor. Prob. Appl.15, 453–486 (1970); The problem of uniqueness of a Gibbs random field and the problem of phase transition. Funct. Anal. Appl.2, 302–312 (1968)

    Google Scholar 

  18. Landford III O. E.: Entropy and equilibrium states in classical statistical mechanics. In: Statistical mechanics and mathematical problems. Lenard A. (ed.) pp. 1–113 LNPh20.

  19. Föllmer, H.: A covariance estimate for Gibbs measures. J. Funct. Anal.46, 387–395 (1982)

    Google Scholar 

  20. Ruelle, D.: Statistical Mechanics: Rigorous Results. New York-Amsterdam: W. A. Benjamin 1969

    Google Scholar 

  21. Glauber, R. J.: Time dependent statistics of the Ising model. J. Math. Phys.4, 294–307 (1963)

    Google Scholar 

  22. Rothaus, O. S.: Logarithmic Sobolev inequalities and the spectrum of Sturm-Liouville Operators. J. Funct. Anal.39, 42–56 (1980); Logarithmic Sobolev inequalities and the spectrum of Schrödinger Operators. J. Funct. Anal.42, 110–120 (1981)

    Google Scholar 

  23. Simon, B.: A remark on Nelson's best hypercontractive estimates. Proc. AMS55, 376–378 (1978)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by M. Aizenman

Supported by SFB 237

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zegarlinski, B. Log-Sobolev inequalities for infinite one dimensional lattice systems. Commun.Math. Phys. 133, 147–162 (1990). https://doi.org/10.1007/BF02096558

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02096558

Keywords

Navigation