Advertisement

Foundations of Physics

, Volume 25, Issue 5, pp 717–742 | Cite as

Moving frame transport and gauge transformations

  • R. G. Beil
Article

Abstract

An outline is given as to how gauge transformations in a frame fiber can be interpreted as defining various types of transport of a moving frame along a path. The cases of general linear, parallel, Lorentz, and other transport groups are examined in Minkowski space-time. A specific set of frame coordinates is introduced. A number of results are obtained including a generalization of Frenet-Serret transport, an extension of Fermi-Walker transport, a relation between frame spaces and certain types of Finsler space, and a derivation of a Kaluza-Klein type metric. Frame transport in general Riemannian space-time is also discussed.

Keywords

General Linear Gauge Transformation Finsler Space Frame Space Transport Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Misner, K. S. Thorne, and J. A. Wheeler,Gravitation (Freeman, San Francisco, 1973), pp. 169 and 228.Google Scholar
  2. 2.
    H. Flanders,Differential Forms with Applications to the Physical Sciences (Dover, New York, 1989), p. 146.Google Scholar
  3. 3.
    L. A. Cordero, C. T. J. Dodson, and M. de Léon,Differential Geometry of Frame Bundles (Kluwer, Dordrecht, 1989).Google Scholar
  4. 4.
    é. Cartan,La Méthode du Repére Mobile, la Théorie des Groupes Continues et las Espaces Generalisées (Herman, Paris, 1935).Google Scholar
  5. 5.
    J. G. Vargas,Found. Phys. 22, 507 (1992).Google Scholar
  6. 6.
    J. Krause,Int. J. Theor. Phys. 12, 35 (1975).Google Scholar
  7. 7.
    J. F. Corum,J. Math. Phys. 18, 770 (1977).Google Scholar
  8. 8.
    D. Gregorash and G. Papini,Nuovo Cimento B 55, 37 (1980).Google Scholar
  9. 9.
    B. Gogala,Int. J. Theor. Phys. 19, 587 (1980).Google Scholar
  10. 10.
    H. Urbantke,Am. J. Phys. 58, 747 (1990).Google Scholar
  11. 11.
    R. G. Beil,Found. Phys. 23, 1587 (1993).Google Scholar
  12. 12.
    E. T. Newman and T. W. J. Unti,J. Math. Phys. 4, 1467 (1963).Google Scholar
  13. 13.
    P. A. Hogan and G. F. R. Ellis,Ann. Phys. (N.Y.) 195, 293 (1989).Google Scholar
  14. 14.
    A. Herdegen,Phys. Lett. A 144, 293 (1990).Google Scholar
  15. 15.
    B. L. Willis,J. Math. Phys. 32, 1400 (1991).Google Scholar
  16. 16.
    A. Lozado and P. L. Torres,J. Math. Phys. 30, 345 (1989).Google Scholar
  17. 17.
    P. S. Florides, J. McCrea, and J. L. Synge,Proc. R. Soc. London A 292, 1 (1966).Google Scholar
  18. 18.
    J. L. Synge,Ann. Math. 84, 33 (1970).Google Scholar
  19. 19.
    A. J. Hanson and T. Regge,Ann. Phys. (N.Y.) 87, 498 (1974).Google Scholar
  20. 20.
    J. L. Synge,Relativity: The General Theory (North-Holland, Amsterdam, 1960), p. 10.Google Scholar
  21. 21.
    B. R. Iyer and C. V. Vishveshwara,Phys. Rev. D 48, 5706 (1993).Google Scholar
  22. 22.
    M. Rivas,J. Math. Phys. 30, 318 (1989).Google Scholar
  23. 23.
    B. Mashhoon,Phys. Lett. A 139, 103 (1989).Google Scholar
  24. 24.
    F. W. Hehl, J. D. McCrea, E. W. Mielke, and Y. Néeman,Found. Phys. 19, 1075 (1989).Google Scholar
  25. 25.
    D. Ivanenko and G. Sardanashvily,Phys. Rep. 94, 1 (1983).Google Scholar
  26. 26.
    R. G. Beil,Int. J. Theor. Phys. 32, 1019 (1993).Google Scholar
  27. 27.
    R. G. Beil,Int. J. Theor. Phys. 31, 1025 (1992).Google Scholar
  28. 28.
    R. Miron and T. Kawaguchi,Int. J. Theor. Phys. 30, 1521 (1991).Google Scholar
  29. 29.
    R. G. Beil,Int. J. Theor. Phys. 26, 189 (1987).Google Scholar
  30. 30.
    R. G. Beil,Int. J. Theor. Phys. 30, 1663 (1991).Google Scholar
  31. 31.
    R. Adler, M. Bazin, and M. Schiffer,Introduction to General Relativity (McGraw-Hill, New York, 1975).Google Scholar
  32. 32.
    P. R. Holland and C. Philipidis, inQuantum Implications: Essays in Honour of David Bohm, B. J. Hiley and F. D. Peat, eds. (RKP, London, 1987).Google Scholar
  33. 33.
    I. Vetharaniam and G. E. Stedman,Class. Quantum Gravit. 11, 1069 (1994).Google Scholar
  34. 34.
    J. G. Vargas,Found. Phys. 21, 379 (1991).Google Scholar
  35. 35.
    M. V. Atre and N. Mukunda,J. Math. Phys. 27, 2908 (1986).Google Scholar
  36. 36.
    C. MØller,K. Dan. Vidensk. Selsk., Mat. Fys. Skr. 1, No. 10 (1961).Google Scholar
  37. 37.
    H.-J. Treder,Ann. Phys. (Leipzig) 28, 283 (1972).Google Scholar
  38. 38.
    U. Bleyer,Ann. Phys. (Leipzig) 39, 203 (1982).Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • R. G. Beil
    • 1
  1. 1.Marshall

Personalised recommendations