Advertisement

Foundations of Physics

, Volume 25, Issue 5, pp 701–716 | Cite as

Propensity, probability, and quantum physics

  • J. Barretto Bastos Filho
  • F. Selleri
Article

Abstract

Popper's idea of propensities constituting the physical background of predictable probabilities is reviewed and developed by introducing a suitable formalism compatible with standard probability calculus and with its frequency interpretation. Quantum statistical ensembles described as pure cases (“eigenstates”) are shown to be necessarily not homogeneous if propensities are actually at work in nature. An extension of the theory to EPR experiments with local propensities leads to a new and more general proof of Bell's theorem. No joint probabilities for incompatible observables need to be introduced.

Keywords

Joint Probability Statistical Ensemble Suitable Formalism Standard Probability General Proof 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. R. Popper,Quantum Theory and the Schism in Physics (Hutchinson, London, 1988).Google Scholar
  2. 2.
    F. Selleri,Philosophia Naturalis 28, 17 (1991).Google Scholar
  3. 3.
    J. S. Bell,Physics 1, 195 (1965).Google Scholar
  4. 4.
    K. R. Popper, “Bell's theorem: A note on locality,” in A. van der Merweet al., eds.,Microphysical Reality and Quantum Formalism, Vol. 1 (Kluwer Academic, Dordrecht, 1988).Google Scholar
  5. 5.
    J. Tersoff and D. Bayer,Phys. Rev. Lett. 50, 553 (1983).Google Scholar
  6. 6.
    K. R. Popper,A World of Propensities (Thoemmes, Bristol, 1990).Google Scholar
  7. 7.
    A. Einstein, B. Podolsky, and N. Rosen,Phys. Rev. 47, 777 (1935).Google Scholar
  8. 8.
    See, e.g., A. Aspect, J. Dalibard, and G. Roger,Phys. Rev. Lett. 49, 1804 (1982); W. Perrie, A. J. Duncan, H. J. Beyer, and H. Kleinpoppen,Phys. Rev. Lett. 54, 1790 (1985).Google Scholar
  9. 9.
    J. von Neumann,The Mathematical Foundations of Quantum Mechanics (Princeton University Press, Princeton, 1955).Google Scholar
  10. 10.
    J. F. Clauser and M. A. Horne,Phys. Rev. D 10, 526 (1974).Google Scholar
  11. 11.
    E. P. Wigner,Am. J. Phys. 38, 1005 (1970).Google Scholar
  12. 12.
    See F. Selleri,Quantum Paradoxes and Physical Reality (Kluwer Academic, Dordrecht, 1990), Chap. 6.Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • J. Barretto Bastos Filho
    • 1
  • F. Selleri
    • 2
  1. 1.Departamento de Fisica da Universidade, Federal de AlagoasCidade UniversitariaMaceio-AlagoasBrazil
  2. 2.Dipartimento di FisicaUniversità di Bari, INFNBariItaly

Personalised recommendations