Advertisement

Foundations of Physics

, Volume 25, Issue 5, pp 681–700 | Cite as

A model of quantum measurement in Josephson junctions

  • Roger A. Hegstrom
  • Fernando Sols
Article

Abstract

A model for the quantum measurement of the electronic current in a Josephson junction is presented and analyzed. The model is similar to a Stern-Gerlach apparatus, relying on the deflection of a spin-polarized particle beam by the magnetic field created by the Josephson current. The aim is (1) to explore, with the help of a simple model, some general ideas about the nature of the information which can be obtained by measurements upon a quantum system and (2) to find new approaches for obtaining information about the nature of the states of a macroscopic quantum system. In the case of sufficiently strong coupling between the system and the apparatus, we find that the model provides in principle a standard ideal measurement of the value of the instantaneous Josephson current. In the case of weak coupling, where the measurement is not ideal, we show that the scattering of neutrons from a junction can in principle be used to measure the average value of the Josephson current, thereby allowing an experimental distinction to be made between an eigenstate of relative phase and one of relative Cooper pair number. The possibility of the latter type of measurement suggests an experimental approach to answer a question of fundamental interest, namely whether two isolated superconductors (or superfluids) possess a definite relative phase or a definite relative number of superconducting (or super/lowing) particles.

Keywords

Quantum System Strong Coupling Relative Phase Weak Coupling Relative Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    For a collection of fundamental papers, seeQuantum Theory and Measurement, J. A. Wheeler and W. H. Zurek, eds. (Princeton University Press, Princeton, 1983).Google Scholar
  2. 2.
    A. J. Leggett,Contemp. Phys. 25, 583 (1984).Google Scholar
  3. 3.
    A. O. Caldeira and A. J. Leggett,Ann. Phys. (N. Y.) (1983); A. J. Leggett, inChance and Matter (Proceedings of Les Houches, Session XLVI, 1986), J. Souletie, J. Vannimenus, and R. Stora, eds. (Elsevier, Amsterdam, 1987).Google Scholar
  4. 4.
    P. W. Anderson,Phys. Rev. 112, 164 (1958);Rev. Mod. Phys. 38, 298 (1966).Google Scholar
  5. 5.
    P. W. Anderson, inThe Lesson of Quantum Theory, J. de Boer, E. Dal, and O. Ulfbeck, eds. (North-Holland, Amsterdam, 1986).Google Scholar
  6. 6.
    A. J. Leggett and F. Sols,Found. Phys. 21, 353 (1991).Google Scholar
  7. 7.
    D. Bohm,Quantum Theory (Prentice-Hall, New York, 1951; reprinted by Dover, New York, 1989).Google Scholar
  8. 8.
    E. P. Wigner,Am. J. Phys. 31, 6 (1963).Google Scholar
  9. 9.
    M. Hillery and M. O. Scully, inQuantum Optics, Experimental Gravity, and Measurement Theory, P. Meystre and M. O. Scully, eds. (Plenum, New York, 1983).Google Scholar
  10. 10.
    M. O. Scully, B. G. Englert, and J. Schwinger,Phys. Rev. A 40, 1775 (1989).Google Scholar
  11. 11.
    L. E. Ballentine,Phys. Rev. A 43, 5165 (1991).Google Scholar
  12. 12.
    A. Peres,Phys. Rev. D 39, 2943 (1989).Google Scholar
  13. 13.
    A. Peres and A. Ron,Phys. Rev. A 42, 5720 (1990).Google Scholar
  14. 14.
    C. Caves, inQuantum Optics, Experimental Gravity, and Measurement Theory, P. Meystre and M. O. Scully, eds. (Plenum, New York and London, 1983).Google Scholar
  15. 15.
    T. Van Duzer and C. W. Turner,Principles of Superconductors Devices and Circuits (North Holland, Amsterdam, 1981), pp. 150, 160–162; P. W. Anderson, inLectures on the Many-Body Problem (Ravello, 1963), E. R. Caianiello, ed., Vol. 2 (Academic, New York, 1964), pp. 113–135, especially p. 127.Google Scholar
  16. 16.
    N. F. Mott and H. S. W. Massey,The Theory of Atomic Collisions (Clarendon Press, Oxford, 1965), pp. 214–219.Google Scholar
  17. 17.
    J. R. Taylor,Scattering Theory (Wiley, New York, 1972).Google Scholar
  18. 18.
    P. W. Anderson,Basic Notions of Condensed Matter Physics (Benjamin/Cummings, Menlo Park, 1984).Google Scholar
  19. 19.
    B. D'Espagnat,Conceptual Foundations of Quantum Mechanics (Addison-Wesley, Menlo Park, 1989), Chap. 10.Google Scholar
  20. 20.
    F. Sols,Physica B 194–196, 1389 (1994); F. Sols and R. A. Hegstrom, inFundamental Problems in Quantum Physics, by M. Ferrero and A. van der Merwe, eds. (Kluwer Academic, Dordrecht, 1995).Google Scholar
  21. 21.
    L. S. Rodberg and R. M. Thaler,Introduction to the Quantum Theory of Scattering (Academic Press, New York, 1967), p. 17.Google Scholar
  22. 22.
    D. K. Saldin and P. L. de Andres,Phys. Rev. Lett. 64, 1270 (1990).Google Scholar
  23. 23.
    A. Szöke, inShort Wavelength Coherent Radiation: Generalization and Application, by D. J. Atwood and J. Boker, eds. (AIP Conference Proceedings No. 147) (American Institute of Physics, New York, 1986).Google Scholar
  24. 24.
    Y. Aharonov, J. Anandan, and L. Vaidman,Phys. Rev. A 47, 4616 (1993).Google Scholar
  25. 25.
    Y. Aharonov and L. Vaidman,Phys. Lett. A 178, 38 (1993).Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • Roger A. Hegstrom
    • 1
  • Fernando Sols
    • 2
  1. 1.Department of ChemistryWake Forest UniversityWinston-Salem
  2. 2.Departamento de Física de la Materia Condensada, C-XIIUniversidad Autónoma de MadridMadridSpain

Personalised recommendations