Advertisement

Foundations of Physics

, Volume 25, Issue 5, pp 645–679 | Cite as

Horizons and singularities in static, spherically symmetric spacetimes

  • James T. Wheeler
Article

Abstract

We make a thorough study of the regions near finite-order metric-singularity boundaries of static, spherically symmetric spacetimes. After distinguishing curvature singularities from other types of metric breakdown, we examine the eigenvalues of the energy tensor near the singularities for positivity and energy dominance, find the causal class of the t-translation (“static”) Killing field, and ascertain the presence or absence of timelike, null, and spacelike geodesic incompleteness for each spacetime. For a certain subclass of spacetimes, we also show the completeness of all timelike and spacelike curves despite the superficial failure of the metric.

Keywords

Curvature Singularity Energy Tensor Symmetric Spacetimes Spacelike Curve Causal Class 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. W. York,Phys. Rev. D 31, 775 (1985).Google Scholar
  2. 2.
    D. Hochberg, T. W. Kephart, and J. W. York,Phys. Rev. D 48, 479 (1993).Google Scholar
  3. 3.
    D. Hochberg and T. W. Kephart,Phys. Rev. D 47, 1465 (1993).Google Scholar
  4. 4.
    K. W. Howard,Phys. Rev. D 30, 2532 (1984).Google Scholar
  5. 5.
    D. Hochberg, LAEFF preprint LAEFF-94/08 (1994).Google Scholar
  6. 6.
    D. N. Page,Phys. Rev. D 25, 1499 (1982).Google Scholar
  7. 7.
    B. P. Jensen and A. Ottewill,Phys. Rev. D 39, 1130 (1989).Google Scholar
  8. 8.
    M. R. Brown, A. C. Ottewill, and D. N. Page,Phys. Rev. D 33, 2840 (1986).Google Scholar
  9. 9.
    M. Walker,J. Math. Phys. 11, 2280–2286 (1970).Google Scholar
  10. 10.
    G. Szekeres,Publ. Mat. Debrecen 7, 285–301 (1960).Google Scholar
  11. 11.
    M. D. Kruskal,Phys. Rev. 119, 1743–1745 (1960).Google Scholar
  12. 12.
    A. S. Eddington,Nature (London) 113, 192 (1924); D. Finkelstein,Phys. Rev. 110, 965–967 (1958); I. D. Novikov, doctoral dissertation, Shternberg Astronomical Institute, Moscow, 1963.Google Scholar
  13. 13.
    P. R. Anderson, W. A. Hiscock, and D. Loranz, unpublished.Google Scholar
  14. 14.
    P. Szekeres and V. Iyer,Phys. Rev. D 47, 4362–4371 (1993).Google Scholar
  15. 15.
    T. Dray, C. A. Manogue, and R. W. Tucker,Gen. Relativ. Gravit. 23, 967–971 (1991).Google Scholar
  16. 16.
    G. F. R. Ellis, A. Sumeruk, D. Coule, and C. Hellaby,Class. Quantum Gravit. 9, 1535–1554 (1992).Google Scholar
  17. 17.
    G. F. R. Ellis,Gen. Relativ. Gravit. 24, 1047–1068 (1992).Google Scholar
  18. 18.
    T. Dray, C. A. Manogue, and R. W. Tucker,Phys. Rev. D 48, 2587–2590 (1993).Google Scholar
  19. 19.
    T. Dereli and R. W. Tucker,Class. Quantum. Gravit. 10, 365–373 (1993).Google Scholar
  20. 20.
    J. D. Romano,Phys. Rev. D 47, 4328 (1993).Google Scholar
  21. 21.
    W. Israel,Phys. Rev. 164, 1776–1779 (1967).Google Scholar
  22. 22.
    C. Evans, doctoral dissertation, University of Texas, Austin, 1984.Google Scholar
  23. 23.
    J. T. Wheeler,Proceedings, 5th Canadian Conference on General Relativity and Relativistic Astrophysics, R. B. Mann and R. G. McLenaghan, eds. (World Scientific, Singapore, 1994), pp. 125–129.Google Scholar
  24. 24.
    C. Ehresman,Colloque de Topologie (Espaces Fibres) Bruxelles 1950 (Masson, Paris, 1957), pp. 29–50.Google Scholar
  25. 25.
    B. G. Schmidt,J. Gen. Relativ. Gravit. 1, 269–280 (1971).Google Scholar
  26. 26.
    S. W. Hawking and G. F. R. Ellis,The Large Scale Structure of Space-Time (Cambridge University Press, Cambridge, 1973), p. 259.Google Scholar
  27. 27.
    R. Penrose,Proc. R. Soc. London A 284, 159–203 (1964), “Conformal treatment of infinity,” in C. DeWitt and B. S. DeWitt, eds.,Relativity, Groups and Topology (Gordon and Breach, New York, 1964).Google Scholar
  28. 28.
    D. Brill, private communication.Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • James T. Wheeler
    • 1
  1. 1.Department of PhysicsUtah State UniversityLogan

Personalised recommendations