Skip to main content
Log in

Information, physics, and computation

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

This paper presents several observations on the connections between information, physics, and computation. In particular, the computing power of quantum computers is examined. Quantum theory is characterized by superimposed states and nonlocal interactions. It is argued that recently studied quantum computers, which are based on local interactions, cannot simulate quantum physics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P. Benioff, “Quantum mechanical Hamiltonian models of Turing machines,”J. Stat. Phys. 29, 515–546 (1982).

    Google Scholar 

  2. C. H. Bennett, “The thermodynamics of computation—a review,”Int. J. Theor. Phys. 21, 905–940 (1982).

    Google Scholar 

  3. D. Deutsch, “Quantum theory, the Church-Turing principle and the universal quantum computer,”Proc. R. Soc. London A 400, 97–117 (1985).

    Google Scholar 

  4. R. P. Feynman and A. R. Hibbs,Quantum Mechanics and Path Integrals (McGraw Hill, New York, 1965).

    Google Scholar 

  5. R. P. Feynman, “Simulating physics with computers,”Int. J. Theor. Phys. 21, 467–488 (1982).

    Google Scholar 

  6. R. P. Feynman, “Quantum mechanical computers,”Found. Phys. 16, 507–531 (1986).

    Google Scholar 

  7. E. Fredkin and T. Toffoli, “Conservative logic,”Int. J. Theor. Phys. 21, 219–253 (1982).

    Google Scholar 

  8. M. Jibu, S. Hagan, S. Hameroff, K. H. Pribram, and K. Yasue, “Quantum optical coherence in cytoskeletal microtubules: implications for brain function,”BioSystems 32, 195–209 (1994).

    Google Scholar 

  9. S. C. Kak, “On quantum numbers and uncertainty,”Nuovo Cimento 33B, 530–534 (1976).

    Google Scholar 

  10. S. C. Kak, “On information associated with an object,”Proc. Indian Nat. Sci. Acad. 50, 386–396 (1984).

    Google Scholar 

  11. S. C. Kak, “On quantum neural computing,”Inform. Sci. 83, 143–160 (1995).

    Google Scholar 

  12. S. C. Kak, “Quantum neural computing,”Adv. Imaging Electron Phys. 94, 259–313 (1995).

    Google Scholar 

  13. R. Landauer, “Irreversibility and heat generation in the computing process,”IBM J. Res. Dev. 5, 183–191 (1961).

    Google Scholar 

  14. R. Landauer, “Computation and physics: Wheeler's meaning circuit?”Found. Phys. 16, 551–564 (1986).

    Google Scholar 

  15. R. Landauer, “Information is physical,”Phys. Today 44(5), 23–29 (1991).

    Google Scholar 

  16. R. Landauer, “Is quantum mechanically coherent computation useful?” inProceedings, Drexel-4 Symposium on Quantum Nonintegrability—Quantum-Classical Correspondence, D. H. Feng and B-L. Hu, eds. (International Press, 1995).

  17. S. Lloyd, “A potentially realizable quantum computer,”Science 261, 1569–1571 (1993).

    Google Scholar 

  18. H.-O. Peitgen, H. Jürgens, and D. Saupe,Fractals for the Classroom: Complex Systems and Mandelbrot Set (Springer, New York, 1992).

    Google Scholar 

  19. P. Shor, “Algorithms for quantum computation: discrete logarithms and factoring,” inProceedings, 35th Annual Symposium on Foundations of Computer Science (IEEE Press, 1994).

  20. J. A. Wheeler, “The computer and the universe,”Int. J. Theor. Phys. 21, 557–572 (1982).

    Google Scholar 

  21. E. P. Wigner, inThe Scientist Speculates, I. J. Good, ed. (Basic Books, New York, 1961).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kak, S.C. Information, physics, and computation. Found Phys 26, 127–137 (1996). https://doi.org/10.1007/BF02058892

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02058892

Keywords

Navigation