Skip to main content
Log in

Hypercomplex quantum mechanics

  • Part III. Invited Papers Dedicated to Max Jammer
  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The fundamental axioms of the quantum theory do not explicitly identify the algebraic structure of the linear space for which orthogonal subspaces correspond to the propositions (equivalence classes of physical questions). The projective geometry of the weakly modular orthocomplemented lattice of propositions may be imbedded in a complex Hilbert space; this is the structure which has traditionally been used. This paper reviews some work which has been devoted to generalizing the target space of this imbedding to Hilbert modules of a more general type. In particular, detailed discussion is given of the simplest generalization of the complex Hilbert space, that of the quaternion Hilbert module.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Jammer,The Conceptual Development of Quantum Mechanics (McGraw-Hill, New York, 1966), pp. 205, 375–377.

    Google Scholar 

  2. Mr. Tait, in a letter to A. Cauchy.(1)

  3. W. R. Hamilton,Philos. Mag. 25, 10, 241, 489 (1844).

    Google Scholar 

  4. H. Taber,Am. J. Math. 12, 337 (1890).

    Google Scholar 

  5. J. W. Gibbs,Nature 44, 79 (1891).

    Google Scholar 

  6. A. Hurwitz,Nachr. Gesell. Wiss., Göttingen, Math-Phys. Kl. 309 (1898).

  7. Personal communication to H. H. Goldstine. The axiomatic foundation of the quantum theory does not restrict the structure of the Hilbert module in which the propositional system is embedded, provided that it is isomorphic to a projective geometry. See, for example. C. Piron,Mécanique quantique (Presses polytechniques et universitaires romandes, Lausanne, 1990).

  8. H. H. Goldstine and L. P. Horwitz,Proc. Natl. Acad. Sci. USA 48, 1134 (1962);Math. Ann. 154, 1 (1964).

    Google Scholar 

  9. P. Jordan. J. von Neumann, and E. P. Wigner,Ann. Math. (New York) 35, 29 (1934).

    Google Scholar 

  10. A. A. Albert,Ann. Math. (New York) 35, 65 (1934).

    Google Scholar 

  11. H. H. Goldstine and L. P. Horwitz,Math. Ann. (New York) 164, 291 (1966).

    Google Scholar 

  12. M. Günaydin and F. Gürsey,Phys. Rev. D 9, 3387 (1974).

    Google Scholar 

  13. L. P. Horwitz and L. C. Biedenharn,J. Math. Phys. 20, 269 (1979).

    Google Scholar 

  14. W. Freudenthal, Math. Inst. der Rijksuniversiteit te Utrecht (1951).

  15. D. Finkelstein, J. M. Jauch, S. Schiminovitch and D. Speiser,J. Math. Phys. 3, 207 (1962);4, 788 (1963).

    Google Scholar 

  16. L. P. Horwitz and L. C. Biedenharn,Ann. Phys. (New York) 157, 432 (1984).

    Google Scholar 

  17. S. L. Adler,Quaternionic Quantum Mechanics and Quantum Fields (Oxford University Press. Oxford, 1995).

    Google Scholar 

  18. A. Razon, L. P. Horwitz and L. C. Biedenharn,J. Math. Phys. 30, 59 (1989).

    Google Scholar 

  19. L. P. Horwitz,J. Math. Phys. 34, 3405 (1993).

    Google Scholar 

  20. L. P. Horwitz,J. Math. Phys. 35, 2743, 2760 (1994).

    Google Scholar 

  21. T. D. Lee,Phys. Rev. 95, 1329 (1954); K. O. Friedrichs,Commun. Pure &Appl. Math. 1. 361 (1950).

    Google Scholar 

  22. B. Misra, I. Prigogine and M. Courbage,Proc. Natl. Acad. Sci. USA 76, 4768 (1979).

    Google Scholar 

  23. C. Flesia and C. Piron,Helv. Phys. Acta 57, 697 (1984).

    Google Scholar 

  24. L. P. Howitz and C. Piron,Helv. Phys. Acta 66, 693 (1993).

    Google Scholar 

  25. E. Eisenberg and L. P. Horwitz,Adv. Chem. Phys., to be published.

  26. E. Eisenberg and L. P. Horwitz,Phys. Rev. A 52, 70 (1995).

    Google Scholar 

  27. Y. Strauss and L. P. Horwitz, in preparation.

  28. A. Razon and L. P. Horwitz,Acta. Appl. Math. 24, 141, 179 (1991).

    Google Scholar 

  29. For example, M. B. Green, J. H. Schwarz, and E. Witten,Superstring Theory, I and II (Cambridge University Press, Cambridge, 1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horwitz, L.P. Hypercomplex quantum mechanics. Found Phys 26, 851–862 (1996). https://doi.org/10.1007/BF02058638

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02058638

Keywords

Navigation