Advertisement

Foundations of Physics

, Volume 24, Issue 3, pp 387–400 | Cite as

Vacuum structures in Hamiltonian light-front dynamics

  • F. Coester
  • W. Polyzou
Article

Abstract

Hamiltonian light-front dynamics of quantum fields may provide a useful approach to systematic nonperturbative approximations to quantum field theories. We investigate inequivalent Hilbert-space representations of the light-front field algebra in which the stability group of the light front is implemented by unitary transformations. The Hilbert space representation of states is generated by the operator algebra from the vacuum state. There is a large class of vacuum states besides the Fock vacuum which meet all the invariance requirements. The light-front Hamiltonian must annihilate the vacuum and have a positive spectrum. We exhibit relations of the Hamiltonian to the nontrivial vacuum structure.

Keywords

Hilbert Space Field Theory Quantum Field Theory Large Class Vacuum State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. N. Bogolubovet al., General Principles of Quantum Theory (Kluwer Academic, Dordrecht, 1990), p. 262.Google Scholar
  2. 2.
    L. Van Hove,Physics 18, 145 (1952).Google Scholar
  3. 3.
    K. O. Friedrics,Mathematical Aspects of the Quantum Theory of Fields (Interscience, New York, 1953).Google Scholar
  4. 4.
    L. Gårding and A. S. Wightman,Proc. Natl. Acad. USA 40, 622 (1956).Google Scholar
  5. 5.
    I. E. Segal,Trans. Am. Math. Soc. 88, 12 (1958).Google Scholar
  6. 6.
    F. Coester and R. Haag,Phys. Rev. 117, 1137 (1960).Google Scholar
  7. 7.
    H. Araki,J. Math. Phys. 1, 492 (1964).Google Scholar
  8. 8.
    P. A. M. Dirac,Rev. Mod. Phys. 21, 329 (1949).Google Scholar
  9. 9.
    S. Weinberg,Phys. Rev. 150, 1313 (1966).Google Scholar
  10. 10.
    H. C. Pauli and S. J. Brodsky,Phys. Rev. D 32, 1993, 2001 (1985).Google Scholar
  11. 11.
    R. J. Perryet al., Phys. Rev. Lett. 65, 2959 (1990).Google Scholar
  12. 12.
    D. Mustakiet al., Phys. Rev. D 43, 3411 (1991).Google Scholar
  13. 13.
    A. C. Tanget al., Phys. Rev. D 44, 1842 (1991).Google Scholar
  14. 14.
    T. Maskawa and K. Yamawaki,Prog. Theor. Phys. 56, 270 (1976).Google Scholar
  15. 15.
    Th. Heinzlet al., Z. Phys. A 334, 443 (1989);Phys. Lett. B 256, 55 (1991);Nucl. Phys. A 532, 429c (1991); Regensburg Preprint TPR 92-17.Google Scholar
  16. 16.
    G. McCartor and D. Robertson,Z. Phys. C 53, 679 (1992).Google Scholar
  17. 17.
    S. Pinsky, Ohio State Preprint OHSTPY-HEP-TH-92-030.Google Scholar
  18. 18.
    F. Rohrlich,Acta Phys. Austriaca, Supp. 8, 277 (1971); see Sec. 5.Google Scholar
  19. 19.
    F. Coester,Prog. Nucl. Part. Phys. 29, 1 (1992).Google Scholar
  20. 20.
    H. Araki and E. J. Woods,J. Math. Phys. 4, 637 (1963).Google Scholar
  21. 21.
    S. Schlieder and E. Seiler,Commun. Math. Phys. 25, 62 (1972).Google Scholar
  22. 22.
    L. Schwartz,Théorie des Distributions (Hermann, Paris, 1957).Google Scholar
  23. 23.
    I. M. Gelfand and G. E. Shilov,Generalized Functions (Academic, New York, 1964).Google Scholar
  24. 24.
    R. Haag,Local Quantum Physics (Springer, New York, 1992).Google Scholar
  25. 25.
    R. F. Streater and A. S. Wightman,PCT, Spin & Statistics and All That (Benjamin, New York, 1964).Google Scholar
  26. 26.
    See Sec. II. 1.2, Ref. 24.Google Scholar
  27. 27.
    See Chap. III, Ref. 24.Google Scholar
  28. 28.
    H. Leutwyler, J. R. Klauder, and L. Streit,Nuovo Cimento A 66, 536 (1970).Google Scholar
  29. 29.
    N. Bourbaki,Lie Groups and Lie Algebras (Springer, New York, 1989), pp. 160–161.Google Scholar
  30. 30.
    See Sec. II.2.2, Ref. 24.Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • F. Coester
    • 1
  • W. Polyzou
    • 2
  1. 1.Physics DivisionArgonne National LaboratoryArgonne
  2. 2.Department of Physics and AstronomyThe University of IowaIowa City

Personalised recommendations