Foundations of Physics

, Volume 24, Issue 3, pp 335–362 | Cite as

On foundational and geometric critical aspects of quantum electrodynamics

  • Eduard Prugovečki


The foundational difficulties encountered by the conventional formulation of quantum electrodynamics, and the criticism by Dirac, Schwinger, Rohrlich, and others, aimed at some of the physical and mathematical premises underlying that formulation, are reviewed and discussed. The basic failings of the conventional methods of quantization of the electromagnetic field are pointed out, especially with regard to the issue of local (anti)commutativity of quantum fields as an embodiment of relativistic microcausality. A brief description is given of a recently advanced new type of approach to quantum electrodynamics, and to quantum field theory in general, which is epistemically based on intrinsically quantum ideas about the physical nature of spacetime, and is mathematically based on a fiber theoretical formulation of quantum geometries, aimed in part at removing the aforementioned difficulties and inconsistencies. It is shown that these ideas can be traced to a conceptualization of spacetime outlined by Einstein in the last edition of his well-known semipopular exposition of relativity theory.


Field Theory Quantum Field Theory Conventional Method Electromagnetic Field Critical Aspect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. M. Jauch and F. Rohrlich,The Theory of Photons and Electrons, 2nd expanded edition (Springer, New York, 1976).Google Scholar
  2. 2.
    F. Rohrlich, inFoundations of Radiation Theory and Quantum Electrodynamics, A. O. Barut, ed. (Plenum, New York, 1980).Google Scholar
  3. 3.
    E. Prugovečki,Quantum Geometry (Kluwer, Dordrecht, 1992).Google Scholar
  4. 4.
    H. S. Kragh,Dirac: A Scientific Biography (Cambridge University Press, Cambridge, 1990).Google Scholar
  5. 5.
    P. A. M. Dirac,Nature (London) 137, 298 (1936).Google Scholar
  6. 6.
    P. A. M. Dirac,Proc. R. Soc. London A 209, 251 (1951).Google Scholar
  7. 7.
    P. A. M. Dirac, inDirections in Physics, H. Hora and J. R. Shepanski, eds. (Wiley, New York, 1978).Google Scholar
  8. 8.
    P. A. M. Dirac, inMathematical Foundations of Quantum Mechanics, A. R. Marlow, ed. (Academic Press, New York, 1978).Google Scholar
  9. 9.
    B. N. Kursunoglu and E. P. Wigner, eds.,Reminiscences about a Great Physicist: Paul Adrien Maurice Dirac (Cambridge University Press, Cambridge, 1987).Google Scholar
  10. 10.
    P. A. M. Dirac,Proc. R. Soc. London A 114, 243 (1927).Google Scholar
  11. 11.
    J. Schwinger, ed.,Quantum Electrodynamics (Dover, New York, 1958).Google Scholar
  12. 12.
    M. Born and P. Jordan,Z. Phys. 34, 858 (1925).Google Scholar
  13. 13.
    K. Bleuler, inGeometry and Theoretical Physics, J. Debrus and A. C. Hirshfeld, eds. (Springer, Berlin, 1991).Google Scholar
  14. 14.
    E. Prugovečki,Found. Phys. 22, 143 (1992).Google Scholar
  15. 15.
    S. S. Schweber, inPions to Quarks: Particle Physics in the 1950's, L. M. Brown, M. Dresden, and L. Hoddeson, eds. (Cambridge University Press, Cambridge, 1989).Google Scholar
  16. 16.
    R. P. Feynman, inSuperstrings: A Theory of Everything? P. C. W. Davies and J. Brown, eds. (Cambridge University Press, Cambridge, 1989).Google Scholar
  17. 17.
    V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii,Quantum Electrodynamics, 2nd edition (Pergamon Press, Oxford, 1982).Google Scholar
  18. 18.
    S. T. Ali and E. Prugovečki,Nuovo Cimento A 63, 171 (1981).Google Scholar
  19. 19.
    E. T. Jaynes, inComplexity, Entropy, and the Physics of Information, W. H. Zurek, ed. (Addison-Wesley, Reading, Massachusetts, 1990).Google Scholar
  20. 20.
    C. Itzykson and J.-B. Zuber,Quantum Field Theory (McGraw-Hill, New York, 1980).Google Scholar
  21. 21.
    A. Franklin,The Neglect of Experiment (Cambridge University Press, Cambridge, 1986).Google Scholar
  22. 22.
    A. Franklin,Experiment, Right or Wrong (Cambridge University Press, Cambridge, 1990).Google Scholar
  23. 23.
    J. T. Cushing,Theory Construction and Selection in Modern Physics (Cambridge University Press, Cambridge, 1990).Google Scholar
  24. 24.
    N. Nakanishi, inQuantum Electrodynamics, T. Kinoshita, ed. (World Scientific, Singapore, 1990).Google Scholar
  25. 25.
    E. Prugovečki,Stochastic Quantum Mechanics and Quantum Spacetime, 2nd corrected printing (Reidel, Dordrecht, 1986).Google Scholar
  26. 26.
    P. Lorenzen,Constructive Philosophy (University of Massachusetts Press, Amherst, 1987).Google Scholar
  27. 27.
    A. Einstein, inReadings on the Philosophy of Science, H. Feigl and M. Brodbeck, eds. (Appleton-Century-Crofts, New York, 1953).Google Scholar
  28. 28.
    N. N. Bogolubov, A. A. Logunov, A. I. Oksak, and I. T. Todorov,General Principles of Quantum Field Theory (Kluwer, Dordrecht, 1990).Google Scholar
  29. 29.
    R. Haag and D. Kastler,J. Math. Phys. 5, 848 (1964).Google Scholar
  30. 30.
    J. A. Wheeler and W. H. Zurek, eds.,Quantum Theory and Measurement (Princeton University Press, Princeton, 1983).Google Scholar
  31. 31.
    H. Lehmann, K. Symanzik, and W. Zimmermann,Nuovo Cimento 6, 319 (1957).Google Scholar
  32. 32.
    M. Friedman,Foundations of Space-Time Theories (Princeton University Press, Princeton, 1983).Google Scholar
  33. 33.
    E. Recami,Found. Phys. 17, 239 (1987).Google Scholar
  34. 34.
    J. R. Fanchi,Phys. Rev. A 37, 3956 (198).Google Scholar
  35. 35.
    J. R. Fanchi,Found. Phys. 20, 189 (1990).Google Scholar
  36. 36.
    J. Glimm and A. Jaffe,Quantum Physics, 2nd edition (Springer, New York, 1987).Google Scholar
  37. 37.
    G. Morchio and F. Strocchi,Nucl. Phys. B 211, 471 (1983).Google Scholar
  38. 38.
    S. Warlow,Krein Spaces and Fibre Bundles in the Quantum Theory of Gauge Fields (Ph.D. thesis, University of Toronto, 1992).Google Scholar
  39. 39.
    F. Strocchi and A. S. Wightman,J. Math. Phys. 15, 2198 (1974);17, 1930 (1976).Google Scholar
  40. 40.
    A. Einstein,Relativity: the Special and the General Theory, 15th edition (Crown Publishers-Bonanza Books, New York, 1961).Google Scholar
  41. 41.
    A. Einstein and M. Grossmann,Entwurf einer verallgemeinerten Relativitätstheorie und einer Theorie der Gravitation (Teubner, Leipzig, 1913).Google Scholar
  42. 42.
    A. Ashtekar and J. Stachel, eds.,Conceptual Problems in Quantum Gravity (Birkhäuser, Boston, 1991).Google Scholar
  43. 43.
    A. Einstein, inThe Principle of Relativity (Methuen, London, 1923; reprinted by Dover, New York, 1952).Google Scholar
  44. 44.
    E. Prugovečki,Hadromic J. 4, 1018 (1981).Google Scholar
  45. 45.
    L. de Broglie, inPerspectives in Quantum Theory, W. Yougrau and A. van der Merwe, eds. (Dover, New York, 1979).Google Scholar
  46. 46.
    N. Bohr,Atomic Physics and Human Knowledge (Science Editions, New York, 1961).Google Scholar
  47. 47.
    E. Prugovečki,Found. Phys. Lett. 4, 129 (1991).Google Scholar
  48. 48.
    P. A. M. Dirac,Rev. Mod. Phys. 21, 392 (1949).Google Scholar
  49. 49.
    W. Heisenberg,Z. Phys. 110, 251 (1938).Google Scholar
  50. 50.
    M. Born,Rev. Mod. Phys. 21, 463 (1949).Google Scholar
  51. 51.
    E. Prugovečki,Found. Phys. 22, 755 (1992).Google Scholar
  52. 52.
    E. Prugovečki,Found. Phys. 21, 93 (1991).Google Scholar
  53. 53.
    B. S. De Witt, inGravitation: An Introduction to Current Research, L. Witten, ed. (Wiley, New York, 1962).Google Scholar
  54. 54.
    C. A. Mead,Phys. Rev. B 135, 849 (1964).Google Scholar
  55. 55.
    E. Prugovečki,Quantum Mechanics in Hilbert Space, 2nd edition (Academic Press, New York, 1981).Google Scholar
  56. 56.
    J. Fröhlich, G. Morchio, and F. Strocchi,Ann. Phys. (N.Y.) 119, 241 (1979).Google Scholar
  57. 57.
    E. Prugovečki,Principles for Quantum General Relativity, World Scientific, Singapore (to appear).Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • Eduard Prugovečki
    • 1
  1. 1.Department of MathematicsUniversity of TorontoTorontoCanada

Personalised recommendations