Skip to main content
Log in

An Einstein addition law for nonparallel boosts using the geometric algebra of space-time

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The modern use of algebra to describe geometric ideas is discussed with particular reference to the constructions of Grassmann and Hamilton and the subsequent algebras due to Clifford. An Einstein addition law for nonparallel boosts is shown to follow naturally from the use of the representation-independent form of the geometric algebra of space-time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Grassmann,Die ausdehnungslehre (Leipzig, 1844; completed in 1862).

  2. Sir William Rowan Hamilton,Lectures in Quaternions (Dublin, 1853),Elements of Quaternions (posthumous, 1866).

  3. David Hestenes,Space-Time Algebra (Gordon & Breach, New York, 1966).

    Google Scholar 

  4. David Hestenes and Garret Sobczyk,Clifford Algebra to Geometric Calculus: A Unified Language for Mathematics and Physics (Kluwer Academic, Dordrecht, 1984).

    Google Scholar 

  5. David Hestenes,New Foundations for Classical Mechanics (Kluwer Academic, Dordrecht, 1990).

    Google Scholar 

  6. T. G. Vold, “An introduction to geometric algebra with an application in rigid body mechanics,”Am. J. Phys. 61, 491–504 (1993); “An introduction to geometric calculus and its application to electrodynamics,”Am. J. Phys. 61, 505–513 (1993).

    Google Scholar 

  7. S. L. Altmann,Rotations, Quaternions and Double Groups (Oxford University Press, Oxford, England, 1986), Chapter 12.

    Google Scholar 

  8. Bernard Jancewicz,Multivectors and Clifford Algebra in Electrodynamics (World Scientific, Teaneck, New Jersey, 1988).

    Google Scholar 

  9. S. Gull, A. Lasenby, and C. Doran, “Imaginary numbers are not real—the geometric algebra of spacetime,”Found. Phys. 23, 175–1201 (1993).

    Google Scholar 

  10. C. Doran, A. Lasenby, and S. Gull, “States and operators in the space-time algebra,”Found. Phys. 23, 1239–1264 (1993).

    Google Scholar 

  11. A. N. Lasenby, C. J. L. Doran, and S. F. Gull, “A multivector derivative approach to Lagrangian field theory,”Found. Phys. 23, 1295–1327 (1993).

    Google Scholar 

  12. S. F. Gull, A. N. Lasenby, and C. J. L. Doran, “Electron paths, tunnelling and diffraction in the spacetime algebra,”Found. Phys. 23, 1329–1356 (1993).

    Google Scholar 

  13. A. N. Lasenby, C. J. L. Doran, and S. F. Gull, “Grassmann calculus, pseudo-classical mechanics and geometric algebra,”J. Math. Phys. 34, 3683–3712 (1993).

    Google Scholar 

  14. J. Ricardo Zeni and Waldyr A. Rodrigues, Jr., “A thoughtful study of Lorentz transformations by clifford algebras,”Int. J. Mod. Phys. 7, 1793–1817 (1992).

    Google Scholar 

  15. N. A. Doughty,Lagrangian Interaction: An Introduction to Relativistic Symmetry in Electrodynamics and Gravitation (Addison-Wesley, Reading, Massachusetts, 1990); Sec. 13.7 consider the alternative factorizations of a Lorentz transformation.

    Google Scholar 

  16. John David Jackson,Classical Electrodynamics (Wiley, New York, 1962).

    Google Scholar 

  17. Charles W. Misner, Kip S. Thorne, and John Archibald Wheeler,Gravitation (Freeman, San Francisco, 1973), pp. 1135et. seq.

    Google Scholar 

  18. A. C. Hirschfeld and F. Metzger, “A simple formula for combining rotations and Lorentz boosts,”Am. J. Phys. 54, 550–552 (1986).

    Google Scholar 

  19. B. Tom King, “Reflection optics, an Einstein addition law for nonparallel boosts, and the geometric algebra of space-time,”J. Opt. Soc. Am. A,12, 773–780 (1995).

    Google Scholar 

  20. Abraham A. Ungar, “Thomas precession and its associated grouplike structure,”Am. J. Phys. 59, 824–834(1991).

    Google Scholar 

  21. N. Salingaros, “The Lorentz group and the Thomas precession. II. Exact results for the product of two boosts,”J. Math. Phys. 27, 157–162 (1986).

    Google Scholar 

  22. D. G. Ashworth, “A new and simple deduction of the Thomas precession,”Nuovo Cimento 40, 242–246 (1977).

    Google Scholar 

  23. H. Goldstein,Classical Mechanics (Addison-Wesley, Reading, Massachusetts, 1980), 2nd edn.

    Google Scholar 

  24. R. Simon, N. Mukunda, and E. C. G. Sudarshan, “Hamilton's theory of turns generalized toSp(2,R),”Phys. Rev. Lett. 62, 1331–1334 (1989).

    Google Scholar 

  25. R. Simon, N. Mukunda, and E. C. G. Sudarshan, “The theory of screws: A geometric representation for the groupSU(1,1),”J. Math. Phys. 30, 1000–1006 (1989).

    Google Scholar 

  26. R. Simon and Mukunda, N., “Hamilton's turns and geometric phase for two-level systems,”J. Phys. A 25, 6135–6144 (1992).

    Google Scholar 

  27. P. Lounesto, “Spinor-Valued Regular Functions in Hypercomplex Analysis,” PhD thesis, Helsinki University of Technology, 1979.

  28. M. Riesz,Clifford Numbers and Spinors (Kluwer, Academic, Dordrecht, 1993). Reprinted from Lecture series No. 38, University of Maryland, College Park, 1958).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tom King, B. An Einstein addition law for nonparallel boosts using the geometric algebra of space-time. Found Phys 25, 1741–1755 (1995). https://doi.org/10.1007/BF02057886

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02057886

Keywords

Navigation