Foundations of Physics

, Volume 25, Issue 11, pp 1561–1575 | Cite as

Local reality: Can it exist in the EPR-Bohmgedanken experiment?

  • Satoshi Uchiyama


Measuring processes of a single spin-1/2 object and of a pair of spin-1/2 objects in the EPR-Bohm state are modeled by systems of differential equations. The latter model is a local model with hidden variables of the EPR-Bohm gedanken experiment. Although there is no dynamical interaction between the pair of spin-1/2 objects, the model reproduces approximately the quantum-mechanical correlations by coincidence counting. Hence the Bell inequality is violated. This result supports the idea that the coincidence counting is the source of the apparent nonlocality in the EPR-Bohm gedanken experiment.


Differential Equation Local Model Dynamical Interaction Hide Variable Bell Inequality 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. S. Bell,Rev. Mod. Phys. 38, 447 (1966). S. Kochen and E. P. Specker,J. Math. Mech. 17, 59 (1967).Google Scholar
  2. 2.
    E. G. Beltrametti and G. Cassinelli,The Logic of Quantum Mechanics (Addison-Wesley, Reading, 1981), Chap. 15.Google Scholar
  3. 3.
    J. S. Bell,Physics 1, 195 (1964).Google Scholar
  4. 4.
    S. J. Freedman and J. F. Clauser,Phys. Rev. Lett. 28, 938 (1972); E. S. Fry and R. C. Thompson,Phys. Rev. Lett. 37, 465 (1976); M. Lamehi-Rachti and W. Miitig,Phys. Rev. D 14, 2543 (1976); A. Aspect, P. Grangier, and G. Roger,Phys. Rev. Lett. 47, 460 (1981),Phys. Rev. Lett. 49, 91 (1982),Phys. Rev. Lett. 49, 1804 (1982); W. Perrie, A. J. Duncan, H. J. Beyer, and H. Kleinpoppen,Phys. Rev. Lett. 54, 1790 (1985).Google Scholar
  5. 5.
    J. F. Clauser and M. A. Horne,Phys. Rev. D 10, 526 (1974).Google Scholar
  6. 6.
    T. W. Marshall, E. Santos, and F. Selleri,Phys. Lett. A 98, 5 (1983).Google Scholar
  7. 7.
    G. C. Scalera,Lett. Nuovo Cimento 38, 16 (1983),Lett. Nuovo Cimento 40, 353 (1984).Google Scholar
  8. 8.
    S. Notarrigo,Nuovo Cimento B 83, 173 (1984).Google Scholar
  9. 9.
    S. Pascazio,Phys. Lett. A 118, 47 (1986).Google Scholar
  10. 10.
    S. Pascazio, inQuantum Mechanics versus Local Realism, F. Selleri, ed. (Plenum, New York, 1988), p. 391.Google Scholar
  11. 11.
    M. Ferrero, T. W. Marshall, and E. Santos,Am. J. Phys. 58, 683 (1990).Google Scholar
  12. 12.
    E. Santos,Phys. Rev. Lett. 66, 1388 (1991).Google Scholar
  13. 13.
    E. Santos,Found. Phys. 21, 221 (1991).Google Scholar
  14. 14.
    E. J. Squires,Phys, Lett. A 178, 22 (1993).Google Scholar
  15. 15.
    D. Bohm,Quantum Theory (Prentice-Hall, New York, 1951), Chap. 22.Google Scholar
  16. 16.
    Roughly speaking, an attractor is an invariant set on which neighboring trajectories accumulate. In our case, a, and a, are just limit cycles. See J.-P. Eckmann and D. Ruelle,Rev. Mod. Phys. 57, 617 (1985).Google Scholar
  17. 17.
    M. Redhead,Incompleteness, Nonlocality, and Realism (Clarendon Press, Oxford, 1987) Sec. 4.1., p. 85.Google Scholar
  18. 18.
    A. Aspect, P. Grangier, and G. Roger,Phys. Rev. Lett. 49, 91 (1982).Google Scholar
  19. 19.
    S. Watanabe,Knowing and Guessing—A Quantative Study of Inference and Information (Wiley, New York, 1969).Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • Satoshi Uchiyama
    • 1
  1. 1.Department of Physics, Faculty of ScienceHokkaido UniversitySapporoJapan

Personalised recommendations