Advertisement

Foundations of Physics

, Volume 25, Issue 11, pp 1541–1560 | Cite as

Set theory and physics

  • K. Svozil
Article

Abstract

Inasmuch as physical theories are formalizable, set theory provides a framework for theoretical physics. Four speculations about the relevance of set theoretical modeling for physics are presented: the role of transcendental set theory (i) in chaos theory, (ii) for paradoxical decompositions of solid three-dimensional objects, (iii) in the theory of effective computability (Church-Turing thesis) related to the possible “solution of supertasks,” and (iv) for weak solutions. Several approaches to set theory and their advantages and disadvatages for physical applications are discussed: Canlorian “naive” (i.e., nonaxiomatic) set theory, contructivism, and operationalism. In the author's opinion, an attitude of “suspended attention” (a term borrowed from psychoanalysis) seems most promising for progress. Physical and set theoretical entities must be operationalized wherever possible. At the same time, physicists should be open to “bizarre” or “mindboggling” new formalisms, which need not be operationalizable or testable at the lime of their creation, but which may successfully lead to novel fields of phenomenology and technology.

Keywords

Theoretical Modeling Lime Theoretical Physic Weak Solution Physical Application 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Einstein,Sitzungberichte der PreuΒischen Akademie der Wissenschaften 1, 123 (1921); reprinted in A. Einstein,Mein Weltbild (Ullstein, 1988), pp. 119–120.Google Scholar
  2. 2.
    G. Cantor, “BeitrÄge zur Begründung der transfiniten Mengenlehre,”Math. Annal. 46, 481–512 (1895);ibid. 49, 207–246 (1897); reprinted in Ref. 4.Google Scholar
  3. 3.
    D. Hilbert, “über das Unendliche,”Math. Ann. 95, 161–190 (1926).Google Scholar
  4. 4.
    G. Cantor,Gesammelte Abhandlungen, A. Fraenkel and E. Zermelo, eds. (Springer, Berlin, 1932).Google Scholar
  5. 5.
    W. Boos, “Consistency and Konsistenz,”Erkenntnis 26, 1–43 (1987).Google Scholar
  6. 6.
    A. A. Fraenkel, Y. Bar-Hillel, and A. Levy,Foundations of Set Theory, 2nd revised edition (North Holland, Amsterdam, 1984).Google Scholar
  7. 7.
    H. Wang,Reflections on Kurt Gödel (MIT Press, Cambridge, Massachusetts, 1991).Google Scholar
  8. 8.
    K. Gödel,Monatsh. Math. Phys. 38, 173 (1931).Google Scholar
  9. 9.
    D. Bridges and F. Richman,Varieties of Constructive Mathematics (Cambridge University Press, Cambridge, 1987).Google Scholar
  10. 10.
    E. Bishop and D. S. Bridges,Conservative Analysis (Springer, Berlin, 1985).Google Scholar
  11. 11.
    P. W. Bridgman, “A physicist's second reaction to Mengenlehre,”Scr. Math. 2, 101–117; 224–234(1934).Google Scholar
  12. 12.
    R. Landauer, “Wanted: A physically possible theory of physics,” inIEEE Spectrum 4, 105–109 (1967).Google Scholar
  13. 13.
    R. Landauer, “Fundamental physical limitations of the computional process; an informal commentary,” inCybernetics Machine Group Newssheet 1/1/87.Google Scholar
  14. 14.
    R. Landauer, “Advertisement for a paper I like,” inOn Limits, J. L. Casti and J. F. Traub, eds. (Santa Fe Institute Report 94-10-056, Santa Fe, New Mexico, 1994), p. 39.Google Scholar
  15. 15.
    P. W. Bridgman,The Logic of Modern Physics (Macmillan, New York, 1927).Google Scholar
  16. 16.
    P. W. Bridgman,The Nature of Physical Theory (Princeton University Press, Princeton, 1936).Google Scholar
  17. 17.
    P. W. Bridgman,Reflections of a Physicist (Philosophical Library, New York, 1950).Google Scholar
  18. 18.
    P. W. Bridgman,The Nature of Some of Our Physical Cocepts (Philosophical Library, New York, 1952).Google Scholar
  19. 19.
    R. O. Gandy, “Limitations to mathematical knowledge,” inLogic Colloquium '82, D. van Dalen, D. Lascar, and J. Smiley, eds. (North-Holland, Amsterdam, 1982), pp. 129–146.Google Scholar
  20. 20.
    R. O. Gandy, “Church's thesis and principles for mechanics,” inThe Kleene Symposium, J. Barwise, H. J. Kreisler and K. Kunen, eds. (North-Holland), Amsterdam, 1980), pp. 123–148.Google Scholar
  21. 21.
    D. Mundici, “Irreversibility, uncerainty, relativity and computer limitations,”Nuovo Cimento 61, 297–305 (1981).Google Scholar
  22. 22.
    R. Landauer, “John Casti's page on “finiteness and real-world limits”, inOn Limits, J. L. Casti and J. F. Traub, eds. (Santa Fe Institute Report 94-10-056, Santa Fe, New Mexico, 1994), p. 34.Google Scholar
  23. 23.
    J. L. Casti, “Finiteness and real-world limits,” inOn Limits, J. L. Casti and J. F. Traub eds., (Santa Fe Institute Report 94-10-056, Santa Fe, New Mexico, 1994), p. 34.Google Scholar
  24. 24.
    E. Specker,Selecta (BirkhÄuser Verlag, Basel, 1990).Google Scholar
  25. 25.
    P. S. Wang, “The undecidability of the existence of zeros of real elementary functions,”J. Assoc. Comput. Mach. 21, 586–589 (1974).Google Scholar
  26. 26.
    G. Kreisel, “A notion of mechanistic theory,”Synthese 29, 11–26 (1974).Google Scholar
  27. 27.
    D. Stefanescu,Mathematical Models in Physics (University of Bucharest Press, Bucharest, 1984) (in Romanian).Google Scholar
  28. 28.
    M. Pour-El, I. Richards,Computability in Analysis and Physics (Springer-Verlag, Berlin, 1989).Google Scholar
  29. 29.
    R. Penrose.The Emperor's New Mind. Concerning Computers, Minds, and the Laws of Physics (Vintage, London, 1990). (First published by Oxford University Press, Oxford, 1989).Google Scholar
  30. 30.
    D. S. Bridges, “Constructive mathematics and unbounded operators—a reply to Hellman,”J. Philos. Logic. in press.Google Scholar
  31. 31.
    C. Calude, D. I. Cambell, K. Svozil, and D. Stefanescu, “Strong determinism vs. computability,”e-print quant-ph/9412004.Google Scholar
  32. 32.
    G. J. Chaitin,Information, Randomness and Incompleteness, 2nd edn. (World Scientific, Signapore, 1987, 1990);Algorithmic Information Theory (Cambridge University Press, Cambridge, 1987):Information-Theoretic Incompleteness (World Scientific, Singapore, 1992).Google Scholar
  33. 33.
    C. Calude,Information and Randomness—An Algorithmic Perspectiv (Springer, Berlin, 1994).Google Scholar
  34. 34.
    M. Li and P. M. B. Vitányi, “Kolmogorov complexity and its applications,” inHandbook of Theoretical Computer Sciences, Algorithmcs and Complexity, Volume A (Elsevier, Amsterdam, and MIT Press, Cambridge, Massachusetts, 1990).Google Scholar
  35. 35.
    R. Shaw,Z. Naturforsch. 36a, 80 (1981).Google Scholar
  36. 36.
    St. Smale,The Mathematics of Time (Springer, New York, 1980).Google Scholar
  37. 37.
    J. Ford,Phys. Today 40(4),1 (1983).Google Scholar
  38. 38.
    F. Chaitin-Chatelin and V. Fraysseé,Lectures on Finite Precision Computations (Society for Industrial and Applied Mathematics, Philadelphia. 1955).Google Scholar
  39. 39.
    H. Goldstein,Classical Mechanics, 2nd edn. (Addison-Wesley, Reading, Massachusetts, 1980).Google Scholar
  40. 40.
    G. H. Hardy and E. M. Wright,An Introduction to the Theory of Numbers, 3rd edn. (Cambridge University Press, London, 1954).Google Scholar
  41. 41.
    E. M. Gold,Inform. Control. 10, 447 (1967).Google Scholar
  42. 42.
    St. Wagon,The Banach-Tarski Paradox, 2nd printing (Cambridge University Press, Cambridge, 1986).Google Scholar
  43. 43.
    B. W. Augenstein,Int. J. Theor. Phys. 23, 1197 (1984); “Conveiving nature — discovering reality,”J. Sci. Explor. 8, 279–282 (1994).Google Scholar
  44. 44.
    I. Pitowsky,Phys. Rev. Lett. 48, 1299 (1982);Phys. Rev. D 27, 2316 (1983); N. D. Mermin,Phys. Rev. Lett. 49, 1214 (1982); A. L. Macdonald,ibid. 1215 (1982); I. Pitowsky,ibid. 1216 (1982);Quantum Probability—Quantum Logic (Springer, Berlin, 1989).Google Scholar
  45. 45.
    H. G. Schuster,Deterministic Chaos (Physik Verlag, Weinheim 1984).Google Scholar
  46. 46.
    J.-P. Eckmann and D. Ruelle,Rev. Mod. Phys. 57, 617 (1985).Google Scholar
  47. 47.
    Tarski's theorem can be stated as follows(42):. Suppose a group G acts onAX. Then there exists a finitely-additive,G-invariant measureΜ:B(x) ↿ [0, ∞) with Μ(A) = 1 if and only ifA isnot G-paradoxical.Google Scholar
  48. 48.
    H. D. P. Lee,Zeno of Elea (Cambridge University Press, Cambridge, 1936; reprinted by Adolf M. Hakkert, Amsterdam, 1967).Google Scholar
  49. 49.
    W. McLaughlin and S. L. Miller, “An epistemological use of nonstandard analysis to answer Zeno's objections against motion,”Synthese 92, 371–384 (1992).Google Scholar
  50. 50.
    H. Weyl,Philosophy of Mathematics and Natural Science (Princeton University Press, Princeton, 1949).Google Scholar
  51. 51.
    A. Grünbaum,Modern Science and Zeno's Paradoxes, 2nd edn (Allen & Unwin, London, 1968);Philosophical Problems of Space of Time, 2nd, enlarged edn. (Reidel, Dordrecht, 1973).Google Scholar
  52. 52.
    J. F. Thomson, “Tasks and super-tasks,”Analysis 15, 1–3 (1954).Google Scholar
  53. 53.
    P. Benacerraf, “Tasks, super-tasks, and the modern eleatics,”J. Philos. 59, 765–784 (1962).Google Scholar
  54. 54.
    I. Pitowsky, “The physical Church-Turing thesis and physical complexity theory,”Iyyun, A Jerusalem Philosophical Quarterly 39, 81–99 (1990).Google Scholar
  55. 55.
    M. Hogarth, “Non-Turing computers and non-Turing computability,”PSA 1994,1, 126–138 (1994).Google Scholar
  56. 56.
    J. Earman and J. D. Norton, “Forever is a day: Supertasks in Pitowsky and Malament-Hogarth spacetimes,”Philos. Sci. 60, 22–42 (1993).Google Scholar
  57. 57.
    K. Svozil,Randomness and Undecidability in Physics (World Scientific, Signapore, 1993).Google Scholar
  58. 58.
    K. Svozil, “On the computional power of physical systems, undecidability, the consistency of phenomena and the practical uses of paradoxes,” inFundamental Problems in Quantum Theory: A Conference Held in Honor of Professor John A. Wheeler, D. M. Greenberger and A. Zeilinger, eds.Ann. N. Y. Acad. Sci. 755, 834–842 (1995).Google Scholar
  59. 59.
    A. Zeilinger, private communication.Google Scholar
  60. 60.
    O. E. Rössler, “Endophysics,” inReal Brians, Artificial Minds, J. L. Casti and A. Karlquist, eds. (North-Holland, New York, 1987), p. 25;Endophysics, Die Welt des inneren Beobachters, P. Weibel, ed. (Merwe Verlag, Berlin, 1992).Google Scholar
  61. 61.
    K. Svozil, “On the setting of scales for space and time in arbitrary quantized media (Lawrence Berkeley Laboratory preprint LBL-16097, May 1983);Europhys. Lett. 2, 83 (1986);Nuovo Cimento B 96, 127 (1986); see also Ref. 57.Google Scholar
  62. 62.
    A. Zeilinger and K. Svozil,Phys. Rev. Lett. 54, 2553 (1985); K. Svozil and A. Zeilinger,Int. J. Mod. Phys. A 1, 971 (1986); K. Svozil and A. Zeilinger,Phys. Scri. T 21, 122 (1988).Google Scholar
  63. 63.
    K. Svozil,J. Phys. A 19, L1125 (1986); K. Svozil,J. Phys. A 20, 3861 (1987).Google Scholar
  64. 64.
    M. Schaller and K. Svozil,Nuovo Cimento B 109, 167 (1994);Int. J. Theor. Phys., in press.Google Scholar
  65. 65.
    R. Descartes, Discours de la méthode pour bien conduire sa raison et chercher la vérité dans les sciences (English translation: Discourse on the Method of Correct Reasoning and the Search for Truth in the Sciences) (1637).Google Scholar
  66. 66.
    A. Jaffe and F. Quinn, “Theoretical mathematics: Toward a cultural synthesis of mathematical and theoretical physics,”Bull. [New Ser.] Am. Math. Soc. 29, 1–13 (1993).Google Scholar
  67. 67.
    E. P. Wigner, “The unreasonable effectiveness of mathematics in the natural sciences,” Richard Courant Lecture delivered at New York University, May 11, 1959 and published inCommun. Pure Appl. Math. 13, 1 (1960).Google Scholar
  68. 68.
    Aristotle,Metaphysics, around 350 B.C., translated by W. D. Ross, e-print http://the-tech.mit.edu/Classics/Aristotle/metaphysics.txt.Google Scholar
  69. 69.
    K. Svozil, “How real are virtual realities, how virtual is reality? The constructive re-interpretation of physical undecidability,” inComplexity, in press.Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • K. Svozil
    • 1
  1. 1.Institut für Theoretische PhysikUniversity of Technology ViennaViennaAustria

Personalised recommendations