Skip to main content
Log in

Relativistic mass distribution in event-anti-event system and “realistic” equation of state for hot hadronic matter

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

We find the equation of state p, ρ ∫ T 6,which gives the value of the sound velocity c 27 = 0.20,in agreement with the “realistic” equation of state for hot hadronic matter suggested by Shuryak, in the framework of a covariant relativistic statistical mechanics of an event-anti-event system with small chemical and mass potentials. The relativistic mass distribution for such a system is obtained and shown to be a good candidate for fitting hadronic resonances, in agreement with the phenomenological models of Hagedorn, Shuryak, et al. This distribution provides a correction to the value of specific heat 3/2,of the order of 5.5%,at low temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. E. V. Shuryak,Phys. Rep. 61, 72 (1980).

    Google Scholar 

  2. R. D. Pisarsky, D. J. Gross, and L. G. Yaffe,Rev. Mod. Phys. 53, 43 (1981).

    Google Scholar 

  3. B. Müller,The Physics of the Quark-Gluon Plasma (Springer, Berlin, 1985).

    Google Scholar 

  4. E. V. Shuryak,The QCD Vacuum, Hadrons and the Superdense Matter (World Scientific., Singapore, 1988).

    Google Scholar 

  5. J. Cleymans, R. V. Gavai, and E. Suhonen,Phys. Rep. 130, 217 (1986).

    Google Scholar 

  6. L. D. Landau, Izv.Akad. Nauk SSSR, Ser. Fiz. 17, 51 (1953).

    Google Scholar 

  7. G. A. Milekhin,Sov. Phys. JETP 8, 829 (1959).

    Google Scholar 

  8. E. V. Shuryak,Sov. J. Nucl. Phys. 16, 220 (1973).

    Google Scholar 

  9. R. Hagedorn,Nuovo Cimento 35, 216 (1965);Suppl. Nuovo Cimento 3, 147 (1965);6, 311 (1968).

    Google Scholar 

  10. S. C. Frautschi,Phys. Rev. D 3, 2821 (1971).

    Google Scholar 

  11. O. V. Zhirov and E. V. Shuryak,Sov. J. Nucl. Phys. 21, 443 (1975).

    Google Scholar 

  12. E. V. Shuryak,Phys. Rev. D 42, 1764 (1990).

    Google Scholar 

  13. E. V. Shuryak,Nucl. Phys. A 522, 377c (1991);533, 761 (1991).

    Google Scholar 

  14. E. V. Shuryak,Nucl. Phys. A 536, 739 (1992).

    Google Scholar 

  15. S. Weinberg,Phys. Rev. Lett. 17, 616 (1966).

    Google Scholar 

  16. P. Gerber and H. Leutwyler,Nucl. Phys. B 321, 387 (1989).

    Google Scholar 

  17. S. Z. Belenky and L. D. Landau,Sov. Phys. Uspekhi 62, 1 (1956).

    Google Scholar 

  18. E. Beth and G. E. Uhlenbeck,Physica 3, 729 (1936).

    Google Scholar 

  19. L. D. Landau and E. M. Lifshitz,Statistical Physics, Part 1 (Pergamon, Oxford, 1986), p. 236.

    Google Scholar 

  20. R. D. Carlitz,Phys. Rev. D 5, 3231 (1972).

    Google Scholar 

  21. G. A. Milekhin, inProc. of the International Conference on Cosmic Rays (Nauka, Moscow, 1960).

    Google Scholar 

  22. S. Sohlo and G. Wilk,Lett. Nuovo Cimento 13, 375 (1975).

    Google Scholar 

  23. M. I. Gorensteinet al., Phys. Lett. B 60, 283 (1976).

    Google Scholar 

  24. B. Andersonet al., Nucl. Phys. B 112, 413 (1976).

    Google Scholar 

  25. A. Schnabel and J. Rafelski, Diploma Thesis, Frankfurt, 1984.

  26. B. Müller and J. M. Eisenberg,Nucl. Phys. A 435, 791 (1985).

    Google Scholar 

  27. L. P. Horwitz, W. C. Schieve, and C. Piron,Ann. Phys. (N.Y.) 137, 306 (1981).

    Google Scholar 

  28. L. P. Horwitz, S. Shashoua, and W. C. Schieve,Physica A 161, 300 (1989).

    Google Scholar 

  29. L. Burakovsky and L. P. Horwitz,Physica A 201, 666 (1993).

    Google Scholar 

  30. L. Burakovsky and L. P. Horwitz,Found. Phys. 25, 785 (1995).

    Google Scholar 

  31. D. E. Miller and E. Suhonen,Phys. Rev. D 26, 2944 (1982).

    Google Scholar 

  32. L. P. Horwitz and C. Piron,Helv. Phys. Acta 46, 316 (1973).

    Google Scholar 

  33. J. M. Levy-Leblond,J. Math. Phys. 4, 776 (1963).

    Google Scholar 

  34. E. C. G. Stueckelberg,Helv. Phys. Acta 14, 372, 588 (1941);15, 23 (1942).

    Google Scholar 

  35. R. Arshansky, L. P. Horwitz, and Y. Lavie,Found. Phys. 13, 1167 (1983).

    Google Scholar 

  36. J. L. Synge,The Relativistic Gas (North-Holland, Amsterdam, 1957).

    Google Scholar 

  37. A. Erdélyi, ed.,Higher Transcendental Functions (Bateman Series) (McGraw-Hill, New York, 1953), Vol. 1, p. 257, Sec. 6.6.

    Google Scholar 

  38. A. P. Prudnikovet al., Integrals and Series (Gordon & Breach, New York, 1980), Vol. 3, p. 762, Appendix II.5.

    Google Scholar 

  39. H. E. Haber and H. A. Weldon,Phys. Rev. Lett. 46, 1497 (1981).

    Google Scholar 

  40. K. Huang,Statistical Mechanics (Wiley, New York, 1963).

    Google Scholar 

  41. L. Burakovsky, L. P. Horwitz, and W. C. Schieve, “Statistical mechanics and thermodynamics of event-anti-event system,” in preparation.

  42. L. Burakovsky, L. P. Horwitz, and W. C. Schieve, “Relativistic Bose-Einstein condensation to mass-shell limit,” Tel-Aviv University Preprint TAUP-2149-94.

  43. A. Actor,Nucl. Phys. B 256, 689 (1986).

    Google Scholar 

  44. I. S. Gradshteyn and I. M. Ryzhik,Tables of Integrals, Series, and Products (Academic, New York, 1980).

    Google Scholar 

  45. W. Pauli,Theory of Relativity (Pergamon, Oxford, 1958).

    Google Scholar 

  46. L. Burakovsky, L. P. Horwitz, and W. C. Schieve, “Statistical mechanics of relativistic degenerate Fermi gas. I. Cold adiabatic equation of state,” Tel-Aviv University Preprint TAUP-2124-93.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burakovsky, L., Horwitz, L.P. Relativistic mass distribution in event-anti-event system and “realistic” equation of state for hot hadronic matter. Found Phys 25, 1127–1146 (1995). https://doi.org/10.1007/BF02055255

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02055255

Keywords

Navigation