Applied Mathematics and Mechanics

, Volume 11, Issue 9, pp 849–856

# Plastic limit analysis of incompatible finite element method

• Hua Bo-hao
• Wu Chang-chun
• Liu Xiao-ling
• Mao Zhao-lin
Article

## Abstract

This paper describes an incompatible finite element model satisfying the consistency condition of energy to solve the numerical precision problem of finite element solution in perfectly plastic analysis. In this paper the reason and criterion of the application of the model to plastic limit analysis are discussed, and an algorithm of computing plastic limit load is given.

## Key words

incompatible finite element plastic limit analysis

## References

1. [1]
Anderheggen, E. and H. Knopfel, Finite element limit analysis using linear programming,Int. J. Solid Struct.,8 (1972), 1413–1431.Google Scholar
2. [2]
Faccioli, E. and E. Vitiello. A finite element linear programming method for the limit analysis of thin plates,Int. J.Num. Meth. Eng.,5 (1973).Google Scholar
3. [3]
Belytschko, T. and P. G. Hodge, Jr., Plane stress limit analysis by finite elements,J. Eng. Mech. Div. ASCE,96 (1970), 931–944.Google Scholar
4. [4]
Casciaro, R. and L. Cascini, A mixed formulation and mixed finite elements for limit analysis,Int. J. Num. Meth. Eng.,18 (1982), 211–243.Google Scholar
5. [5]
Gao Yang and Huang Ke-zhi, Finite element method of limit analysis with penalty function,Proceedings of 2-nd national conference of computational mechanics, (1986).Google Scholar
6. [6]
Nagtegaal, J. C., D. M. Parks, and J. R. Rice, On numerically accurate finite element solutions in the fully plastic range,Comp. Meth. Appl. Mech. Eng.,4 (1974), 153–177.Google Scholar
7. [7]
Pian, T. H. H and Wu Chang-chun, General formulation of incompatible shape function and an incompatible isoparametric element,Proc. Invitational China-American Workshop on F. E. M., Chende, China, June 2–6 (1986), 159–165.Google Scholar
8. [8]
Wu Chang-chun, Huang Mao-kuang and T. H. H. Pian, Energy consistency condition for incompatible elements and its implementation,Proc. of Int. Conf. on Computational Engineering Mechanics, Beijing, June, 22–25 (1987). 686–690.Google Scholar
9. [9]
Feng Kang, On the theory of discontinuous finite element,Computational Mathematics,4 (1979). (in Chinese)Google Scholar
10. [10]
Prager, W. and P. G. Hodge, Jr.,Theory of Perfectly Plastic Solids, Wiley, New York (1951).Google Scholar
11. [11]
Wang Ren, Xiong Zhu-hua and Huang Wen-bin,Basis of Plastic Mechanics, Scientific Book Concern (1982). (in Chinese)Google Scholar

© Shanghai University of Technology (SUT) 1990

## Authors and Affiliations

• Hua Bo-hao
• 1
• Wu Chang-chun
• 1
• Liu Xiao-ling
• 1
• Mao Zhao-lin
• 1
1. 1.Shanghai Institute of Computer TechnologyShanghai